首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schistosoma mansoni modulation of phagocytosis in Biomphalaria glabrata   总被引:1,自引:0,他引:1  
Both short-term (3 hr) exposure of Biomphalaria glabrata snails (M-line and 13-16-R1) to Schistosoma mansoni (PR1) miracidia and in vitro incubation of parasite sporocysts with host hemolymph components altered host phagocytic ability. Hemocytes obtained from susceptible (M-line) snails that had been exposed to parasite miracidia for 3 hr showed reduced levels of phagocytosis of yeast cells in vitro compared to hemocytes from unexposed individuals. Incubation of whole hemolymph with sporocysts in vitro also reduced yeast phagocytosis in this susceptible strain. In contrast, resistant (13-16-R1) hemocytes showed increased levels of yeast phagocytosis after in vitro incubation with the parasite, and the opsonic properties of 13-16-R1 plasma were greater after exposure of snails to miracidia. These strain-specific effects of S. mansoni on host hemocyte phagocytosis and plasma opsonization were seen only when both plasma and hemocytes were present at the time of exposure to the parasite.  相似文献   

2.
Hemocytes derived from a strain (13-16-R1) of Biomphalaria glabrata resistant to Schistosoma mansoni were significantly more likely to bind untreated latex beads than hemocytes from the schistosome-susceptible M line strain. Beads preincubated in 13-16-R1 plasma were more readily bound by both 13-16-R1 and M line hemocytes than beads preincubated in M line plasma. Beads preincubated in plasma derived from snails of either strain infected with the trematode Echinostoma paraensei were more readily bound by hemocytes than beads preincubated in plasma from control snails of the corresponding strain. Plasma from snails exposed to S. mansoni did not have a similar effect. Throughout these experiments, beads receiving a particular treatment were consistently bound at higher rates by 13-16-R1 than M line hemocytes. SDS-PAGE of plasma components eluted from beads revealed differences between treatments, particularly in diffuse bands falling into two groups, of 75-130 and 150-220 kDa. The results indicate that both hemocytes and plasma components from the two host strains differ and identify plasma molecules deserving of additional study as possible modulators of hemocyte effector functions. Also, S. mansoni and E. paraensei provoked different responses in the same host snail.  相似文献   

3.
In vitro phagocytosis of erythrocytes by hemocytes of B. glabrata, intermediate host of S. mansoni, is strongly influenced by calcium, several lectins, and plasma factors. Our results indicate that two different mechanisms of non-self-recognition in B. glabrata may occur: (1) In the presence of calcium, phagocytosis occurs in noninfected and in infected snails without involvement of any other substances, and hemocytes of schistosome resistant as well as those of susceptible snails are able to recognize and phagocytose the target cells. (2) In the absence of calcium, phagocytosis occurs if bridging molecules (heterologous lectins in our assays) were present for which effector and target cells possess binding sites or if target cells were plasma coated prior to the assays. In suspensions in homologous plasma, hemocytes of both snail strains, infected or noninfected, subsequently showed phagocytic activities of about 70-80%. Preincubation of target cells in homologous plasma resulted in similar high phagocytic activities of hemocytes even in the absence of plasma during the standard assay. In these assays, a significantly higher proportion of hemocytes of resistant snails phagocytosed plasma-opsonized erythrocytes, whereas hemocytes of susceptible snails internalized less erythrocytes per cell and needed 60 min to phagocytose at percentages equivalent to that of resistant hemocytes within 10 min. Preincubation of erythrocytes in resistant plasma significantly increased the subsequent phagocytic activity of susceptible hemocytes, whereas preincubation of erythrocytes in susceptible plasma decreased the phagocytosis level of resistant hemocytes.  相似文献   

4.
Hemocytes taken from six different gastropod snails, Achatina achatina, A. fulica, Biomphalaria glabrata, Bulinus natalensis, Helix aspersa, and Lymnaea stagnalis, were compared for morphology, peroxidase activity, and, using methods developed for L. stagnalis, the ability to generate reactive oxygen inermediates upon phagocytic stimulation. Numbers of hemocytes per milliliter hemolymph and hemocytes' microscopical morphology showed some variation among the snail species. Peroxidase activity was demonstrated in all snail hemocytes except in those of B. glabrata and A. fulica. Hemocytes of all species generated superoxide upon phagocytic stimulation with zymosan (tested by superoxide dismutase-inhibitable reduction of nitroblue tetrazolium). When tested, hemocytes of A. achatina and of A. fulica displayed luminol-dependent chemiluminescence activity.  相似文献   

5.
A modulation of the phagocytic activity of hemocytes from the common periwinkle Littorina littorea by secretory-excretory products (SEP) released by trematode rediae during axenic in vitro cultivation was studied. The SEP released by the parasites Himasthla elongata (Echinostomatidae) and Cryptocotyle lingua (Heterophyidae) were found to inhibit the phagocytosis of zymozan particles by periwinkle hemocytes. The specificity of SEP effects was assessed: SEP of Himasthla militaris and Cryptocotyle concavum, two trematodes belonging to the same genera but infecting another closely related prosobranch snail Hydrobia ulvae, were also shown to be able to suppress L. littorea hemocytes phagocytic activity. However, no decrease in phagocytosis rate was observed when SEP of H. elongata and C. lingua were applied to monolayers of hemocytes from the bivalve mollusc Mytilus edulis. SEP from H. elongata was fractionated; only those fractions containing proteins of molecular weight more than 50 kDa were shown to possess inhibitory activity. Different H. elongata SEP concentrations were tested in for their ability to suppress phagocytosis by L. littorea hemocytes. Even very low SEP concentrations were shown to retain their ability to decrease phagocytosis rate, the inhibitory effect being dose-dependent. Hemocytes derived from snails naturally infected with H. elongata were also found to have lower phagocytic ability as compared to healthy individuals.  相似文献   

6.
Abstract. The cytokine interleukin-1β (IL-1β) mediates interactions of immune and inflammatory cells in mammals. Previous reports also have linked plasma (cell-free hemolymph) levels of IL-1β in the snail Biomphalaria glabrata to resistance against Schistosoma mansoni . In the present study, fluorescent probes were used to study larval schistosome and snail hemocyte viability during in vitro encounters. Hemolymph (plasma and hemocytes) from schistosome-susceptible (M-line) and resistant (13–16-R1) B. glabrata was added to sporocysts of S. mansoni and the viability of hemocytes and parasites was assessed. Next, IL-1β was added to sporocyst-hemolymph samples, the viability of sporocysts and hemocytes determined and then compared to control assays. The number of live sporocysts present after incubation for 1 h with hemolymph from M-line snails was significantly greater than the number seen when hemolymph from 13–16-R1 snails was tested. Nearly all sporocysts survived the 1 h incubation with M-line hemolymph, and most of the hemocytes attached to sporocysts were dead. In contrast, nearly all sporocysts were dead when hemolymph from 13–16-R1 snails was tested, and most attached hemocytes were alive. Addition of IL-1β to M-line hemolymph resulted in a dramatic increase in sporocyst death. Addition of IL-1β to 13–16-R1 hemolymph produced a small but significant increase in the rate of sporocyst death. These results indicate that the concentration of IL-1β present in hemolymph from B. glabrata is directly related to the ability of this snail to kill S. mansoni sporocysts in vitro.  相似文献   

7.
This study attempts to investigate the relationship between the hemocytes in the two compartments: circulating peripheral lymph and the connective tissues. The hemocytes are compared with the vertebrate macrophages and constitute the principal line of defense against external aggression. The hemocytes were counted in circulating hemolymph and their phagocytic capability was evaluated in Schistosoma mansoni-infected Biomphalaria glabrata and the results were compared with those obtained from normal intact control snails. Although the number of circulating hemocytes revealed a mild increase in snails at the 6th week of infection, the overall findings were similar and pointed out that the cells in the two compartments are not functionally connected. However, the hemocytes found within the connective tissues of infected snails showed definite ultrastructural differences in the number and disposition of cytoplasmic prolongations and organelles in comparison with the hemocytes from non-infected snails. Histochemically, the staining for acid phosphatase activity served as a marker to hemocytes, sometimes being found in extracellular material at the foci of parasite-hemocyte interactions.  相似文献   

8.
The fate of Schistosoma mansoni (Trematoda) sporocysts in its molluscan host Biomphalaria glabrata (Gastropoda) is determined by circulating phagocytes (hemocytes). When the parasite invades a resistant snail, it is attacked and destroyed by hemocytes, whereas in a susceptible host it remains unaffected. We used 3 inbred strains of B. glabrata: 13-16-R1 and 10-R2, which are resistant to the PR-1 strain of S. mansoni, and M-line Oregon (MO), which is susceptible to PR-1. In an in vitro killing assay using plasma-free hemocytes from these strains, the rate of parasite killing corresponded closely to the rate by which S. mansoni sporocysts are killed in vivo. Hemocytes from resistant snails killed more than 80% of S. mansoni sporocysts within 48 hr, whereas sporocyst mortality in the presence of hemocytes from susceptible snails was <10%. Using this in vitro assay, we assessed the involvement of reactive oxygen species (ROS) produced by resistant hemocytes, during killing of S. mansoni sporocysts. Inhibition of NADPH oxidase significantly reduced sporocyst killing by 13-16-R1 hemocytes, indicating that ROS play an important role in normal killing. Reduction of hydrogen peroxide (H2O2) by including catalase in the killing assay increased parasite viability. Reduction of superoxide (O2-), however, by addition of superoxide dismutase or scavenging of hydroxyl radicals (*OH) and hypochlorous acid (HOCl) by addition of hypotaurine did not alter the rate of sporocyst killing by resistant hemocytes. We conclude that H2O2 is the ROS mainly responsible for killing.  相似文献   

9.
The distribution and abundance of the lysosomal enzyme markers, acid phosphatase (AP), peroxidase (PO), and nonspecific esterase (NE), within circulating blood cells (hemocytes) were examined in a schistosome-susceptible (PR albino M-line) and a resistant (10-R2) strain of Biomphalaria glabrata during the course of infection with Schistosoma mansoni. The dynamics of serum (cell-free hemolymph) AP activities and total hemocyte numbers in infected snails also were investigated. Hemocyte subpopulations, as determined by these enzyme markers, responded differently to parasite infection between snail strains. Generally, the hemocyte subpopulations within PR albino snails remained largely unchanged, whereas the same subpopulations in 10-R2 snails fluctuated considerably. The distribution of AP in the hemocytes of 10-R2 snails decreased by 1 hr postexposure (PE) to the parasite and remained low through 12 hr before increasing to control values at 24 hr and 2 wk PE. In comparison, PO activity increased by 1 hr PE and peaked at 12 hr before dropping to 0 hr values by 2 wk PE. The NE activity exhibited still another pattern with the percentage of NE-positive cells decreasing from 0 to 12 hr PE followed by a recovery to 0-hr values by 24 hr. The abundance of these hemocyte enzymes followed a similar pattern to that of their distribution, although some differences were observed. Serum AP values varied little in PR albino snails except for a significant increase at 2 wk PE, indicating a possible response to tissue damage resulting from migrating daughter sporocysts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Morphological characteristics and functions of hemocytes were used to compare the immunological effects of biological and chemical stress in the freshwater snailLymnaea palustris. Animals were either infected by a trematode parasite (Metaleptocephalus sp.), or exposed to environmental contaminants, namely atrazine and hexachlorobenzene (HCB). Three populations of circulating hemocytes, morphologically and cytochemically distinct (round cells, hyalinocytes, granulocytes), were identified in both control and parasitized or pesticide-exposed snails. After 6 h of exposure, HCB and atrazine resulted in 8-fold increases in the mean total number of hemocytes, whereas only a 2.2-fold increase was observed 6 h after cercaria emission in parasitized snails. The impact of HCB was limited to the first 24 h of exposure, whereas long-lasting effects of atrazine were observed. Hyalinocytes and, to a lesser extent, round cells contributed most to the increases in hemocyte density in pesticide-exposed snails. Parasitism and atrazine treatment resulted in significant increases of lectin-stained hemocytes, whereas exposure to HCB did not affect the percentages of stained and unstained cells. Hemocyte phagocytic activity increased in HCB-exposed snails but with no concomitant change of the oxidative burst. Opposite results were obtained in atrazine-treated snail hemocytes, with unchanged phagocytosis and decreased phorbol 12-myristate 13-acetate-stimulated production of reactive oxygen intermediates. No increase in phagocytosis, or in the production of reactive oxygen intermediates, was observed in hemocytes from parasitized snails. Infection with the immunologically compatible trematode parasiteMetaleptocephalus sp. and exposure to atrazine generated similar reactions from circulating hemocytes, whereas a different response pattern was observed in HCB-exposed snails. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Sporocysts of Schistosoma mansoni (PR1 strain) survive and grow in Biomphalaria glabrata PR albino strain snails, whereas they are encapsulated and die in B. glabrata 10R2 strain snails. These processes also occur in an in vitro system in which the only living cells are those of sporocysts and snail hemolymph. Hemocytes of the susceptible snail are normally not effective in damaging sporocysts. However, when the encounter occurred in the presence of cell-free plasma from resistant snails, previously impotent hemocytes severely damaged sporocysts in 24 hr. The cytotoxic capacity of resistant strain hemocytes was not altered by plasma from susceptible snails. Furthermore, it was retained even when plasma was replaced by culture medium free of snail components. The nature of the plasma factor(s) which facilitated damage by otherwise impotent hemocytes is discussed, and evidence is evaluated for the hypothesis that snail resistance is dependent upon the specificity of cytophilic factors present both in the plasma and on the hemocyte plasma membranes.  相似文献   

12.
Activation of lobster hemocytes for phagocytosis   总被引:1,自引:0,他引:1  
Activation of lobster (Homarus americanus) hemocytes for phagocytosis of sheep erythrocytes (SRBC) was demonstrated in vitro by incubation with lipopolysaccharide and by prolonged adherence to glass coverslips. Morphological changes, which preceded phagocytic activation, were detected by phase microscopy and Nomarski interference microscopy. These included spreading, the formation of filopodia and pseudopodia, granular darkening and dispersion, and vacuolation. Hemolymph serum opsonin greatly enhanced the recognition and phagocytosis of SRBC by activated hemocytes. Increases of 15 to 20 times background levels were observed both in the proportion of hemocytes which were actively phagocytic, and the percent of rosette-forming hemocytes. This suggested that the enhanced phagocytosis was the result of both the recruitment of a quiescent precursor population during activation, and an increase in the availability of opsonin binding sites on hemocyte membranes.  相似文献   

13.
Two morphologically distinct blood cell types (hemocytes), Type I and Type II were found coexisting in hemolymph from two kinds of snails, Oncomelania nosophora strain, viz. from the Nirasaki strain (schistosome-resistant snail) and the Kisarazu strain (schistosome-susceptible snail). Ten min after inoculation of SRBC, the majority of Type I cells from Nirasaki strain flattened and spread over the surface of the glass plate by extending pseudopodia. In the Kisarazu strain, Type I cells adhered to the surface of substrate with spike-like filopodia, but did not form spreading lamellipodia. Type I cell from the Nirasaki strain phagocytosed SRBC but that from the Kisarazu strain did not. The starting time of recognition of foreign materials was slightly different in the Type I hemocytes from the two strains. Type II cells from both strains were round and lymphocyte-like. Ten or sixty min after incubation, Type II cells from neither strain adhered to the surface of substrate or SRBC, and did not phagocytose SRBC. Type II cells from the Nirasaki strain were quite similar to those from the Kisarazu strain. We concluded that Type I cells from the schistosome-resistant snail, Nirasaki strain, possessed higher phagocytic activity than those from the susceptible snail, Kisarazu strain, despite the morphological similarities of the hemocytes from both strains.  相似文献   

14.
Passive transfer of natural resistance to Schistosoma mansoni (PR-1 strain) has been successfully accomplished in the snail intermediate host, Biomphalaria glabrata (PR albino, M-line strain). Injection of serum (cell-free hemolymph) from a naturally schistosome-resistant strain of B. glabrata (10-R2) into PR albino snails induced a complete protection from a primary infection with the parasite in 29 of 48 snails (60.4%). In comparison, inoculation of homologous PR albino serum or heterologous proteins (fetal calf serum) had no effect. Moreover, this protection could be induced 24 hr prior to, or 24 hr after, exposure to the parasite, although heating of 10-R2 serum to 70 C for 30 min destroyed its protective ability. When in vitro transformed sporocysts were preincubated in 10-R2 or PR albino serum and then were injected into susceptible snails, a high level of infection (88.5 and 83.3%, respectively) was produced in both groups. Thus, the 10-R2 serum factor does not appear to be mediating specific parasite recognition by host hemocytes. Alternatively, our results suggest that 10-R2 serum possesses a heat-labile factor which specifically activate B. glabrata hemocytes to encapsulate and destroy sporocysts whereas PR albino serum lacks this factor.  相似文献   

15.
The in vitro production of the reactive oxygen metabolite superoxide (O2-) was confirmed in hemocytes from the schistosome intermediate host Biomphalaria glabrata. Active forms of the enzyme superoxide dismutase (SOD) inhibited reduction of nitroblue tetrazolium (NBT) to formazan in cells that had phagocytozed zymosan particles, whereas an inactivated form of SOD did not. Moreover, based on the prevalence of O2(-)-positive hemocytes and the relative intensity of NBT staining reactions, hemocytes from the Schistosoma mansoni-resistant 10-R2 strain of B. glabrata possessed an overall greater capacity for generating superoxide than did those from S. mansoni-susceptible M-line snails. Schistosoma mansoni excretory-secretory (E-S) products, released during in vitro transformation of miracidia to sporocysts, inhibited phagocytosis of zymosan particles and superoxide activity in hemocytes from both snail strains, but 10-R2 hemocytes maintained higher levels of phagocytosis and superoxide production than did M-line hemocytes. The dose-dependent decreases in phagocytosis observed in both snail strains in the presence of E-S products could not account fully for the concomitant decrease in superoxide levels detected, indicating that either a single E-S factor differentially affects phagocytosis and superoxide production, or that different E-S factors are involved in the specific interference of each of these hemocyte functions.  相似文献   

16.
Miracidia of Echinostoma paraensei were cultured in medium containing 14C-labeled amino acids, allowed to transform into sporocysts, and their excretory/secretory products (E-S) were collected and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Effects of E-S on hemocytes of Biomphalaria glabrata were also assessed. E-S collected during day 1 of culture (E-S1) contained several polypeptides, none of which were labeled, suggesting that E-S1 are largely preformed. E-S1 significantly depressed the ability of hemocytes to phagocytose sheep red blood cells (SRBC), but otherwise had little effect on hemocyte structure or behavior. E-S released by sporocysts in day-2 cultures (E-S2) and in older cultures generally were similar and also contained several polypeptides, many of which were labeled, indicating active synthesis of E-S in vitro. E-S2 strongly inhibited hemocyte uptake of SRBC. Also, hemocytes pretreated with E-S2 assumed a spherical shape and failed to spread normally. E-S obtained through 10 days of culture mediated this effect. Active components of E-S2 were greater than 100 kDa in their native configuration, were heat- and trypsin-labile, and were bound by anti-E-S antibodies. Both greater than 200- and 80-kDa bands were prominent in anti-E-S immunoprecipitates. Hemocytes derived from snails of the 13-16-R1 strain of B. glabrata (a strain resistant to infection with Schistosoma mansoni), when pretreated with E-S2, bound to sporocysts of S. mansoni but lost their ability to damage such sporocysts. E-S2 interfered with hemocyte functions in ways inferred from earlier classic in vivo studies of trematode-snail interactions.  相似文献   

17.
Lee YK  Soh BS  Wu JH 《Cytometry》2001,43(1):82-85
BACKGROUND: The blood cells of crustaceans are involved in phagocytosis of invading microorganisms, contributing to their defense mechanisms. In this study, phagocytic activity of hemocytes of the prawn, Penaeus merguiensis, was quantitated by means of flow cytometric analysis. METHOD: This study was done in vitro. Hemolymph, which was extracted from prawns, was mixed with an equal volume of anticoagulant. Heat-killed Escherichia coli prestained with propidium iodide (PI) was then added. Hemocytes were fixed at various time intervals for flow cytometric analysis. This study was supplemented with electron micrographs using transmission electron microscopy (TEM), which showed three populations of hemocytes. RESULTS: It was observed that those hemocytes that were more active engulfed and digested bacteria readily, thus having higher red fluorescence intensity. The phagocytic activity was expressed as fluorescence unit or engulfed E. coli number per hemocyte. CONCLUSIONS: With this approach, the phagocytic and cellular activity of individual hemocyte populations could be studied quantitatively.  相似文献   

18.
Activation of adenylate cyclase (AC)-cAMP system in follicle cells of Lymnaea stagnalis by the gonadotropic dorsal body hormone (DBH) is inhibited by schistosomin, an agent present in hemolymph of snails infected with Trichobilharzia ocellata. AC activation was determined enzyme cytochemically. This conclusion is based on the observation that the percentage of oocytes with AC-positive follicle cells in gonads incubated in the presence of schistosomin, i.e., in serum of infected snails (IS) with DBH, is significantly lower than that in gonads incubated in the absence of schistosomin, i.e., in serum of noninfected snails (NS) with DBH. Follicle cells in gonads preincubated in the absence of schistosomin, i.e., in NS, and subsequently incubated with freshly dissolved DBH showed a considerably lower response to DBH than those in not preincubated gonads. This indicates that the number of receptors for DBH on follicle cells had decreased during preincubation. The response to DBH also appeared to decrease when the hormone was preincubated in NS. This indicates that the activity of DBH decreases during preincubation. These data make it impossible to answer the question of whether or not schistosomin acts as an antagonist of DBH at the receptor level.  相似文献   

19.
Gastropod molluscs, which serve as obligatory intermediate hosts for digenetic trematodes, possess an internal defense system (IDS) consisting of phagocytic hemocytes and plasma factors. This IDS is responsible for resistance to infection with larval trematodes, which are encapsulated and killed by hemocytes in incompatible snails. Like other physiological systems, the IDS probably undergoes maturation during early stages of life, and the relatively undeveloped state of the IDS in young snails has been hypothesized to be a factor in their increased susceptibility to infection with larval trematodes. In this study, hemocytes were examined in the BS-90 laboratory strain of Biomphalaria glabrata that is resistant to infection with Schistosoma mansoni as adults but susceptible to infection as neonates. Compared with hemocytes from adults, hemocytes from neonates had a smaller perimeter and lower intrinsic directional motility on glass microscope slides. Additionally, in vitro assays showed a lower association with fucoidan-linked polystyrene beads and less ability to produce superoxide anion in hemocytes from neonates compared to hemocytes from adults. These results support the hypothesis that the gastropod IDS undergoes maturation during growth. However, whether the observed differences between hemocytes of neonatal and adult BS-90 snails play a role in the susceptibility of the former and resistance of the latter to infection with S. mansoni is not known.  相似文献   

20.
A histologic, morphometric and ultrastructural study performed on Biomphalaria glabrata submitted to infection with Schistosoma mansoni miracidia failed to provide significant evidences that the so-called amebocyte-producing organ (APO) is really the central organ for hemocyte production. In infected snails no general reactive changes appeared in the APO, the mitoses were seen only occasionally, and the possibility of cellular hyperplasia was ruled out by morphometric measurements. Under the electron microscope the APO cells presented an essentially epithelial structure, without features indicative of transition toward hemocytes. On the other hand, the present findings pointed to a multicentric origin for the mollusc hemocytes, as earlier studies had indicated. Dense foci of hemocyte collections appeared sometimes around disintegrating sporocysts and cercariae in several organs and tissues of the infected snails, including a curious accumulation of such cells inside the ventricular cavity of the heart. In the heart and other sites, features suggestive of transformation of vascular space endothelial lining cells into hemocytes were apparent. To some extent, the postulated multicentric origin for B. glabrata hemocytes recapitulates earlier embryologic findings in vertebrates, when mesenchymal vascular spaces generate the circulating and phagocytic blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号