首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Gld gene of Drosophila melanogaster is transiently expressed during every stage of development. The temporal pattern of Gld expression is highly correlated with that of ecdysteroids. Exogeneous treatment of third instar larvae with 20-hydroxyecdysone induces the accumulation of Gld mRNA in the hypoderm and anterior spiracular gland cells. During metamorphosis Gld is expressed in a variety of tissues derived from the ectoderm. In the developing reproductive tract, Gld mRNA accumulates in the female spermathecae and oviduct and in the male ejaculatory duct and ejaculatory bulb. These four organs are derived from closely related cell lineages in the genital imaginal disc. Since the expression of Gld is not required for the development of these reproductive structures, this spatial pattern of expression is most likely a fortuitous consequence of a shared regulatory factor in this cell lineage. At the adult stage a high level of the Gld mRNA is only observed in the male ejaculatory duct.  相似文献   

2.
The 30-kb cluster comprising close to 20 copies of tandemly repeated Stellate genes was localized in the distal heterochromatin of the X chromosome. Of 10 sequenced genes, nine contain undamaged open reading frames with extensive similarity to protein kinase CK2 β-subunit; one gene is interrupted by an insertion. The heterochromatic array of Stellate repeats is divided into three regions by a 4.5-kb DNA segment of unknown origin and a retrotransposon insertion: the A region (~14 Stellate genes), the adjacent B region (approximately three Stellate genes), and the C region (about four Stellate genes). The sequencing of Stellate copies located along the discontinuous cluster revealed a complex pattern of diversification. The lowest level of divergence was detected in nearby Stellate repeats. The marginal copies of the A region, truncated or interrupted by an insertion, escaped homogenization and demonstrated high levels of divergence. Comparison of copies in the B and C regions, which are separated by a retrotransposon insertion, revealed a high level of diversification. These observations suggest that homogenization takes place in the Stellate cluster, but that inserted sequences may impede this process.  相似文献   

3.
4.
5.
6.
Glassman E  Mitchell HK 《Genetics》1959,44(2):153-162
  相似文献   

7.
8.
9.
R. Lovering  N. Harden    M. Ashburner 《Genetics》1991,128(2):357-372
TE146 is a giant transposon of Drosophila melanogaster. It carries two copies of the white and roughest genes, normally found on the X chromosome. The structure of this transposon has been studied at the molecular level. TE146 may transpose to new chromosome positions, excise and be lost from the genome or undergo internal rearrangements. The termini of TE146 are foldback DNA elements (FB); the transposon also carries two internal FB elements. Loss or internal rearrangement of TE146 involves recombination between different FB elements. These events have been mapped molecularly, by taking advantage of the fact that the FB sequences are composed largely of a regular 155-bp repeat sequence that is cut by the restriction enzyme TaqI, and are shown to be nonrandom. We suggest that these FB-FB exchange events occur by mitotic sister-chromatid exchange in the premeiotic germ line.  相似文献   

10.
L. F. Stam  C. C. Laurie 《Genetics》1996,144(4):1559-1564
A molecular mapping experiment shows that a major gene effect on a quantitative trait, the level of alcohol dehydrogenase expression in Drosophila melanogaster, is due to multiple polymorphisms within the Adh gene. These polymorphisms are located in an intron, the coding sequence, and the 3' untranslated region. Because of nonrandom associations among polymorphisms at different sites, the individual effects combine (in some cases epistatically) to produce ``superalleles' with large effect. These results have implications for the interpretation of major gene effects detected by quantitative trait locus mapping methods. They show that large effects due to a single locus may be due to multiple associated polymorphisms (or sequential fixations in isolated populations) rather than individual mutations of large effect.  相似文献   

11.
12.
13.
14.
15.
16.
M. T. Hamblin  C. F. Aquadro 《Genetics》1997,145(4):1053-1062
We have analyzed nucleotide sequence variation at the Glucose dehydrogenase (Gld) locus from four populations of Drosophila melanogaster from four continents. All four population samples show a significant reduction in silent variation compared to the neutral expectation. The levels of silent variation across all four populations are consistent with the predictions of the background selection model; however, Zimbabwe has a remarkably low level of variation. In the face of dramatically reduced silent polymorphism, an amino acid variant, leading to the common allozyme polymorphism at Gld, remains in low to intermediate frequency in all non-African samples. In the Chinese population sample, the ratio of replacement to silent variation is significantly elevated compared to the neutral expectation. The difference in patterns of variation across these population samples suggests that selection on Gld (or the Gld region) has been different in the Chinese population than in the other three.  相似文献   

17.
18.
The period (per) gene is located on the X chromosome of Drosophila melanogaster. Its expression influences biological clocks in this fruit fly, including the one that subserves circadian rhythms of locomotor activity. Like most X-linked genes in Drosophila, per is under the regulatory control of gene dosage compensation. In this study, we assessed the activity of altered or augmented per(+) DNA fragments in transformants. Relative expression levels in male and female adults were inferred from periodicities associated with locomotor behavioral rhythms, and by histochemically assessing β-galactosidase levels in transgenics carrying different kinds of per-lacZ fusion genes. The results suggest that per contains multipartite regulatory information for dosage compensation within the large first intron and also within the 3' half of this genetic locus.  相似文献   

19.
20.
MJM. Nivard  A. Pastink    E. W. Vogel 《Genetics》1992,131(3):673-682
The nature of DNA sequence changes induced by methyl methanesulfonate (MMS) at the vermilion locus of Drosophila melanogaster was determined after exposure of postmeiotic male germ cell stages. MMS is a carcinogen with strong preference for base nitrogen alkylation (s = 0.86). The spectrum of 40 intralocus mutations was dominated by AT----GC transitions (23%), AT----TA transversions (54%) and deletions (14%). The small deletions were preferentially found among mutants isolated in the F1 (8/18), whereas the AT----GC transitions exclusively occurred in the F2 (6/22). The MMS-induced transversions and deletions are presumably caused by N-methyl DNA adducts, which may release apurinic intermediates, known to be a time-related process. Furthermore, MMS produces multilocus deletions, i.e., at least 30% of the F1 mutants analyzed were of this type. A comparison of the mutational spectra of MMS with that produced by ethylnitrosourea (ENU), also in the vermilion locus of Drosophila, reveals major differences: predominantly transition mutations (61% GC----AT and 18% AT----GC) were found in both the F1 and F2 spectrum induced by ENU. It is concluded that the mutational spectrum of MMS is dominated by nitrogen DNA adducts, whereas with ENU DNA sequence changes mainly arose from modified oxygen in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号