首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutagenesis of the sucrose-fermenting (SUC1) Saccharomyces cerevisiae strain 4059-358D yielded an invertase-negative mutant (D10). Subsequent mutagenic treatment of D10 gave a sucrose-fermenting revertant (D10-ER1) that contained the same amount of large (mannoprotein) invertase as strain 4059-358D but only trace amounts of the smaller intracellular nonglycosylated enzyme. Limited genetic evidence indicated that the mutations in D10 and D10-ER1 are allelic to the SUC1 gene. The large invertases from D10-ER1 and 4059-358D were purified and compared. The two enzymes have similar specific activity and Km for sucrose, cross-react immunologically, and show the same subunit molecular weight after removal of the carbohydrate with endo-beta-N-acetylglucosaminidae H. They differ in that the large enzyme from the revertant is rapidly inactivated at 55 degrees C, whereas that from the parent is relatively stable at 65 degrees C. The small invertase in extracts of D10-ER1 is also heat sensitive as compared to the small enzyme from the original parent strain. The low level of small invertase in mutant D10-ER1 may reflect increased intracellular degradation of this heat-labile form. In several crosses of D10-ER1 with strains carrying the SUC1 or SUC3 genes, the temperature sensitivity of the large and small invertases and the low cellular level of small invertase appeared to cosegregate. These findings are evidence that SUC1 is a structural gene for invertase and that both large and small forms are encoded by a single gene. A detailed genetic analysis is presented in a companion paper.  相似文献   

2.
A mutant strain of Saccharomyces cerevisiae (D10-ER1) has been isolated after a two-step mutagenesis of strain 4059-358D (SUC 1) using ethyl methane sulfonate. Cells of this new strain produced a level of total invertase equaling that of 4059 but contained only trace amounts of the small, internal, aglycan form of the enzyme (less than 0.1% of total in D10-ER1 compared with 6% in 4059). When D10.ER1 was crossed with an invertase-hyperproducing strain dgr3 (SUC3), progeny were isolated (HZ400-5A and HZ400-2C) in which levels of total invertase had at least quadrupled. The percentage of small invertase, however, remained insignificant. Levels of small invertase in strain HZ400-5A were determined by affinity chromatography on conconavalin A-Sepharose, gel permeation chromatography, and isopycnic centrifugation in CsCl. The large invertase of the SUC1 yeasts described here was found to contain a form apparently greater in size than the large invertase of the SUC2 strain FH4C; this probably reflects a higher content of carbohydrate. The overall results of this study do not support a direct structural relationship between large and small invertases. The implications on invertase biosynthesis and structure are discussed.  相似文献   

3.
Summary Nine sucrose nonfermenting mutants have been isolated from yeast strain EK-6B, carrying the tightly linked SUC3 and MAL3 genes. These mutants are allelic to the SUC3 gene recessive in nature and none of them has detectable levels of either internal or external invertase. A single point mutation leading to the loss of both invertases suggests that either SUC3 is a control gene or codes for a polypeptide which is shared by both invertases.  相似文献   

4.
Summary Polyacrylamide gel electrophoresis (without SDS) of invertases from strains each carrying only one of the five known SUC-genes revealed differences in mobility of the internal enzymes. SUC1 invertase moved distinctly slower than the invertases formed in the presence of genes SUC2 to SUC5. Three bands of internal invertase activity were found in diploids carrying both SUC1 (slow invertase) and one of the other SUC-genes (fast invertases). Tetrad analysis of such diploids yielded haploids which showed the same three bands if they carried SUC1 in combination with another SUC gene. A gene dosage effect was observed in relation to invertase activity in haploid strains with only gene SUC1 or only SUC4 on one hand, and both genes on the other hand. A sucrose non-fermenting and invertase negative strain with mutant allele suc3-3 of gene SUC3 (fast invertase) was crossed with SUC1. The heterozygous diploid and the recombinant haploids (SUC1 suc3-3) showed two bands in the region of the internal invertase: a slow SUC1 band and a second band corresponding to the intermediate band of SUC1-SUC3 strains. The intermediate band in SUC1 suc3-3 strains is considered as a hybrid consisting of an active SUC1-monomer and an inactive suc3-mutant monomer. Formation of such hybrid bands was taken as evidence for the structural nature of SUC-genes.  相似文献   

5.
Organization of the SUC gene family in Saccharomyces.   总被引:18,自引:7,他引:11       下载免费PDF全文
The SUC gene family of yeast (Saccharomyces) includes six structural genes for invertase (SUC1 through SUC5 and SUC7) found at unlinked chromosomal loci. A given yeast strain does not usually carry SUC+ alleles at all six loci; the natural negative alleles are called suc0 alleles. Cloned SUC2 DNA probes were used to investigate the physical structure of the SUC gene family in laboratory strains, commercial wine strains, and different Saccharomyces species. The active SUC+ genes are homologous. The suc0 allele at the SUC2 locus (suc2(0) in some strains is a silent gene or pseudogene. Other SUC loci carrying suc0 alleles appear to lack SUC DNA sequences. These findings imply that SUC genes have transposed to different chromosomal locations in closely related Saccharomyces strains.  相似文献   

6.
L. G. Vallier  M. Carlson 《Genetics》1991,129(3):675-684
To identify new genes required for depression of the SUC2 (invertase) gene in Saccharomyces cerevisiae, we have isolated mutants with defects in raffinose utilization. In addition to mutations in SUC2 and previously identified SNF genes, we recovered recessive mutations that define four new complementation groups, designated snf7 through snf10. These mutations cause defects in the derepression of SUC2 in response to glucose limitation. We also recovered five alleles of gal11 and showed that a gal11 null mutation decreases SUC2 expression to 30% of the wild-type level. Finally, one of the mutants carries a grr1 allele that converts SUC2 from a glucose-inducible gene.  相似文献   

7.
8.
9.
To infer the molecular evolution of polymeric beta-fructosidase SUC genes of the yeast Saccharomyces, we have cloned and sequenced a new SUC gene from S. cariocanus and determined the sequence similarity of beta-fructosidases within the genus Saccharomyces. The proteins of Saccharomyces cerevisiae and its five sibling species (S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus) have high degree of identity - 90-97%. The invertase of S. bayanus is the most divergent among the proteins studied. The data obtained indicated that the yeast invertases are highly conservative. In the coding regions of the SUC genes the pyrimidine transitions were the most abundant event due to silent changes mainly in the third codon position. There is only one, probably, non-telomeric SUC gene in each of the Saccharomyces species. In S. cerevisiae, S. bayanus, S. kudriavzevii, S. mikatae and S. paradoxus the SUC gene have been mapped on chromosome IX, whereas in S. cariocanus this gene is located in chromosone XV, in the position of translocation.  相似文献   

10.
The invertase enzyme family is responsible for carbohydrate metabolism in rice, perennial ryegrass, and wheat. Fructan molecules accumulate in cell vacuoles of perennial ryegrass and wheat and are associated with abiotic stress tolerance. High levels of amino acid similarity between the fructosyltransferases responsible for fructan accumulation indicates that they may have evolved from invertase-like ancestral genes. In this study, we have applied comparative genomics to determine the mechanisms that lead to the evolution of fructosytransferase and invertase genes in rice, perennial ryegrass, and wheat. Duplications and rearrangements have been inferred to generate variant forms of the rice invertases since divergence from a common grass progenitor. The occurrence of multiple copies of fructosyltransferase genes indicated that duplication events continued during evolution of the wheat and perennial ryegrass lineages. Further gene rearrangements were evident in perennial ryegrass genes, albeit at a reduced level compared with the rice invertases. Gene orthologs were largely static after duplication during evolution of the wheat lineage. This study details evolutionary events that contribute to fructosyltransferase and invertase gene variation in grasses.  相似文献   

11.
Strains of baker's yeast conventionally used by the baking industry in Japan were tested for the ability to sporulate and produce viable haploid spores. Three isolates which possessed the properties of baker's yeasts were obtained from single spores. Each strain was a haploid, and one of these strains, YOY34, was characterized. YOY34 fermented maltose and sucrose, but did not utilize galactose, unlike its parental strain. Genetic analysis showed that YOY34 carried two MAL genes, one functional and one cryptic; two SUC genes; and one defective gal gene. The genotype of YOY34 was identified as MATalpha MAL1 MAL3g SUC2 SUC4 gall. The MAL1 gene from this haploid was constitutively expressed, was dominant over other wild-type MAL tester genes, and gave a weak sucrose fermentation. YOY34 was suitable for both bakery products, like conventional baker's yeasts, and for genetic analysis, like laboratory strains.  相似文献   

12.
The unstable mutation Adh1-Fm335 contains a Dissociation (Ds1) transposable element at position +53 in the untranslated leader of the maize Alcohol dehydrogenase-1 (Adh1) gene. Excision of Ds1 is known to generate new alleles with small additions and rearrangements of Adh1 DNA. We characterized 16 revertant alleles with respect to ADH1 activity levels in scutellum (nutritive tissue of the seed), anaerobic root, and pollen. Whereas gene expression was not different from the wild type in the sporophytic tissues of the scutellum and anaerobic root, there were strong allelic differences in pollen. One allele underexpressed pollen ADH1 at 48% of the wild-type level, and another overexpressed pollen ADH1 at 163% of the wild-type level. Quantitative RNase protection assays demonstrated that the mutant phenotypes reflected changes in the levels of steady state mRNA in pollen. These data provide a definitive demonstration of an overexpression mutant in plants and further show that marked increases in mRNA levels can follow minor alterations in central untranslated leader sequences. The nucleotide sequence of 12 new revertant alleles and the molecular mechanisms responsible for pollen-specific gene expression are discussed.  相似文献   

13.
14.
The SUC gene family of Saccharomyces contains six structural genes for invertase (SUC1 through SUC5 and SUC7) which are located on different chromosomes. Most yeast strains do not carry all six SUC genes and instead carry natural negative (suc0) alleles at some or all SUC loci. We determined the physical structures of SUC and suc0 loci. Except for SUC2, which is an unusual member of the family, all of the SUC genes are located very close to telomeres and are flanked by homologous sequences. On the centromere-proximal side of the gene, the conserved region contains X sequences, which are sequences found adjacent to telomeres (C. S. M. Chan and B.-K. Tye, Cell 33:563-573, 1983). On the other side of the gene, the homology includes about 4 kilobases of flanking sequence and then extends into a Y' element, which is an element often found distal to the X sequence at telomeres (Chan and Tye, Cell 33:563-573, 1983). Thus, these SUC genes and flanking sequences are embedded in telomere-adjacent sequences. Chromosomes carrying suc0 alleles (except suc20) lack SUC structural genes and portions of the conserved flanking sequences. The results indicate that the dispersal of SUC genes to different chromosomes occurred by rearrangements of chromosome telomeres.  相似文献   

15.
This report describes a mutant of Listeria monocytogenes strain 10403S (serotype 1/2a) with a defective response to conditions of high osmolarity, an environment that L. monocytogenes encounters in some ready-to-eat foods. A library of L. monocytogenes clones mutagenized with Tn917 was generated and scored for sensitivity to 4% NaCl in order to identify genes responsible for growth or survival in elevated-NaCl environments. One of the L. monocytogenes Tn917 mutants, designated strain OSM1, was selected, and the gene interrupted by the transposon was sequenced. A BLAST search with the putative translated amino acid sequence indicated that the interrupted gene product was a homolog of htrA (degP), a gene coding for a serine protease identified as a stress response protein in several gram-positive and gram-negative bacteria. An htrA deletion strain, strain LDW1, was constructed, and the salt-sensitive phenotype of this strain was complemented by introduction of a plasmid carrying the wild-type htrA gene, demonstrating that htrA is necessary for optimal growth under conditions of osmotic stress. Additionally, strain LDW1 was tested for its response to temperature and H(2)O(2) stresses. The results of these growth assays indicated that strain LDW1 grew at a lower rate than the wild-type strain at 44 degrees C but at a rate similar to that of the wild-type strain when incubated at 4 degrees C. In addition, strain LDW1 was significantly more sensitive to a 52 degrees C heat shock than the wild-type strain. Strain LDW1 was also defective in its response to H(2)O(2) challenge at 37 degrees C, since 100 or 150 micro g of H(2)O(2) was more inhibitory for the growth of strain LDW1 than for that of the parent strain. The stress response phenotype observed for strain LDW1 is similar to that observed for other HtrA(-) organisms, which suggests that L. monocytogenes HtrA may play a role in degrading misfolded proteins that accumulate under stress conditions.  相似文献   

16.
Saccharomyces cerevisiae external and internal invertases have been amplified by introducing the normal and modified SUC2 genes into yeast multicopy plasmids, which were then used to transform a yeast strain resistant to repression by glucose. Amino acid compositional analysis of these enzymes, in addition to end group sequencing, confirmed the DNA sequence data of Taussig and Carlson (Taussig, R., and Carlson, M. (1983) Nucleic Acids Res. 11, 1943-1954), indicating that both enzymes were encoded in the same gene. Comparison of the properties of carbohydrate-containing external invertase and its nonglycosylated internal form revealed that although the carbohydrate did not appear to influence the conformation of the peptide backbone, as determined by circular dichroism analyses, its presence considerably enhanced the ability of guanidine HCl-denatured external invertase to be renatured relative to internal invertase. The Mr of the internal enzymes was found to be greatly dependent on pH with the enzyme being a monomer at pH 9.4, a dimer at pH 8.3, and an apparent octamer at pH 4.9.  相似文献   

17.
With the advent of high-throughput DNA sequencing, it is now straightforward and inexpensive to generate high-density small nucleotide polymorphism (SNP) maps. Here we combined high-throughput sequencing with bulk segregant analysis to expedite mutation mapping. The general map location of a mutation can be identified by a single backcross to a strain enriched in SNPs compared to a standard wild-type strain. Bulk segregant analysis simultaneously increases the likelihood of determining the precise nature of the mutation. We present here a high-density SNP map between Neurospora crassa Mauriceville-1-c (FGSC2225) and OR74A (FGSC2489), the strains most typically used by Neurospora researchers to carry out mapping crosses. We further have demonstrated the utility of the Mauriceville sequence and our approach by mapping the mutation responsible for the only existing temperature-sensitive (ts) cell cycle mutation in Neurospora, nuclear division cycle-1 (ndc-1). The single T-to-C point mutation maps to the gene encoding ornithine decarboxylase (ODC), spe-1 (NCU01271), and changes a Phe to a Ser residue within a highly conserved motif next to the catalytic site of the enzyme. By growth on spermidine and complementation with a wild-type spe-1 gene, we showed that the defect in spe-1 is responsible for the ts ndc-1 mutation. Based on our results, we propose changing ndc-1 to spe-1(ndc), which reflects that this mutation results in an ODC with a specific nuclear division defect.  相似文献   

18.
The MIG1 gene was disrupted in a haploid laboratory strain (B224) and in an industrial polyploid strain (DGI 342) of Saccharomyces cerevisiae. The alleviation of glucose repression of the expression of MAL genes and alleviation of glucose control of maltose metabolism were investigated in batch cultivations on glucose-maltose mixtures. In the MIG1-disrupted haploid strain, glucose repression was partly alleviated; i.e., maltose metabolism was initiated at higher glucose concentrations than in the corresponding wild-type strain. In contrast, the polyploid delta mig1 strain exhibited an even more stringent glucose control of maltose metabolism than the corresponding wild-type strain, which could be explained by a more rigid catabolite inactivation of maltose permease, affecting the uptake of maltose. Growth on the glucose-sucrose mixture showed that the polypoid delta mig1 strain was relieved of glucose repression of the SUC genes. The disruption of MIG1 was shown to bring about pleiotropic effects, manifested in changes in the pattern of secreted metabolites and in the specific growth rate.  相似文献   

19.
Low levels of invertase (EC 3.2.1.26) activity were observed in most diploid strains of S. cerevisiae used in this work. There was no effect of mating type on invertase levels, and cell surface was not a limiting factor, because an increase in ploidy did not cause further decrease in specific invertase activity. Finally, some diploids showed the activity expected from the additive effects of different SUC genes, and haploid strains possessing two SUC genes expressed very variable invertase activities depending on the strain. This suggested the existence of one or more additional genes which control the levels of invertase. Genetic analysis of SUC5 strains provided evidence of the existence of a new gene, RPS5, which drastically reduced the specific invertase activity in strains possessing active SUC alleles. The recessive allele of this gene (rps5) allows expression of higher levels of invertase. We suggest that genes similar RPS5 are responsible for the low levels of invertase activity observed in diploid strains of S. cerevisiae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号