首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants show various defense responses upon wounding. Surviving cells must perceive a "death message" from killed cells in order to start the signal processing that results in defense responses. The initial step in perception of the death message by a surviving cell was studied by taking advantage of the filamentous morphology of characean algae. A specimen comprising two adjoining internodal cells was prepared. One cell (the victim cell) was killed by cutting and any changes in the membrane potential of the neighboring cell (the receptor cell) were analyzed. Upon cutting the victim cell, at least one of three kinds of response were induced in the receptor cell: (1) slow depolarization lasting more than 10 min, (2) action potentials and (3) small spikes. The first of these response types, slow depolarization, was ubiquitous and is the focus of the present study. Two cell properties were essential for generation of this depolarization. (1) Presence of high cell turgor pressure was necessary. (2) The depolarization was generated only at the nodal end of the receptor cell, not at the flank. I concluded that the death message from the killed cell contains the information that turgor pressure has been lost. The mechanism by which this is translated into the slow depolarization of the receptor cell was discussed.  相似文献   

2.
Wounding electrical responses were studied in Chara corallina. Specimens comprising two adjoining internodal cells were prepared. When one cell (victim cell) was cut, the other cell (receptor cell) generated four kinds of depolarization: (i) rapid depolarization; (ii) long-lasting depolarization; (iii) action potentials; and (iv) small spikes. In the present study, attention was focused on the long-lasting depolarization. A decrease in the electrical resistance suggested activation of ion channel(s). The duration of the depolarization was sensitive to the external ions. K(+) significantly prolonged the depolarization. On the other hand, Ca(2+), Mg(2+) and Na(+) had a tendency to shorten the duration prolonged by K(+). When a nodal end was continuously flushed with a medium lacking K(+), the depolarization was significantly shortened. Treatment of the nodal end with artificial cell sap for 2 min induced a long-lasting depolarization similar to that induced by cutting the victim cell. These findings suggested the involvement of K(+) released from the victim cell in generating the long-lasting depolarization by the receptor cell.  相似文献   

3.
Transmembrane potentials recorded from the rabbit heart in vitro were displayed as voltage against time (V, t display), and dV/dt against voltage (V, V or phase-plane display). Acetylcholine was applied to the recording site by means of a hydraulic system. Results showed that (a) differences in time course of action potential upstroke can be explained in terms of the relative magnitude of fast and slow phases of depolarization; (b) acetylcholine is capable of depressing the slow phase of depolarization as well as the plateau of the action potential; and (c) action potentials from nodal (SA and AV) cells seem to lack the initial fast phase. These results were construed to support a two-component hypothesis for cardiac electrogenesis. The hypothesis states that cardiac action potentials are composed of two distinct and physiologically separable "components" which result from discrete mechanisms. An initial fast component is a sodium spike similar to that of squid nerve. The slow component, which accounts for both a slow depolarization during phase 0 and the plateau, probably is dependent on the properties of a slow inward current having a positive equilibrium potential, coupled to a decrease in the resting potassium conductance. According to the hypothesis, SA and AV nodal action potentials are due entirely or almost entirely to the slow component and can therefore be expected to exhibit unique electrophysiological and pharmacological properties.  相似文献   

4.
1. Single sucrose gap recordings showed that spontaneous action potentials of rat ileal smooth muscle consisted of slow waves and superimposed spikes which generated rhythmic contractions. As external potassium was raised, the resting potential progressively depolarized.2. Calcium-free salines inhibited spontaneous mechanical activity and inhibited the plateau phase of the action potential, but spontaneous spike depolarizations persisted.3. Verapamil, nifedipine and diltiazem all inhibited spontaneous mechanical activity and the plateau phase of the action potential, while in addition diltiazem augmented spike amplitude.4. Mn ions also inhibited mechanical activity and the action potential plateau, without affecting spike activity while the calcium ionophore A23187 enhanced both mechanical and electrical activity with a pronounced effect on spike amplitude.5. These results are consistent with the view that the plateau phase of the ileal smooth muscle action potential is dependent upon an influx of extracellular calcium possibly through voltage dependent slow calcium channels.  相似文献   

5.
When the velocity of capillary blood flow in the frog tongue declined to an intermediate range of 0.2-0.7 mm/s, the glossopharyngeal nerve stimulation induced a biphasic slow depolarizing and slow hyperpolarizing potential (HP) in taste cells. The objective of this work was to examine the generative mechanisms of the biphasic slow potentials. The biphasic slow response was always preceded by a slow depolarizing potential (DP) component and followed by a slow HP component. Intravenous injection of tubocurarine completely blocked the biphasic slow responses, suggesting that both components of the biphasic slow potentials are evoked by the parasympathetic nerve (PSN) fibers. Membrane conductance of taste cells increased during slow DPs and decreased during slow HPs. The reversal potential of either component of a biphasic slow response was the almost same value of -12 mV. An antagonist, L-703,606, for neurotransmitter substance P neurokinin(1) receptor completely blocked both components of the biphasic slow responses. An antagonist, flufenamic acid, for nonselective cation channels on the taste cell membrane completely blocked the biphasic slow responses. These results suggest that PSN-induced biphasic slow responses are postsynaptically elicited in taste cells by releasing substance P at the PSN axon terminals. It is concluded that the slow DP component may be generated by opening one type of nonselective cation channel on taste cells and that the slow HP component may be generated by closing the other type of nonselective cation channel. We discussed that a second messenger inositol 1,4,5-trisphosphate might be related to a slow DP component and another second messenger diacylglycerol might be related to a slow HP component.  相似文献   

6.
Olfactory responses at the receptor level have been thoroughly described in Drosophila melanogaster by electrophysiological methods. Single sensilla recordings (SSRs) measure neuronal activity in intact individuals in response to odors. For sensilla that contain more than one olfactory receptor neuron (ORN), their different spontaneous spike amplitudes can distinguish each signal under resting conditions. However, activity is mainly described by spike frequency.Some reports on ORN response dynamics studied two components in the olfactory responses of ORNs: a fast component that is reflected by the spike frequency and a slow component that is observed in the LFP (local field potential, the single sensillum counterpart of the electroantennogram, EAG). However, no apparent correlation was found between the two elements.In this report, we show that odorant stimulation produces two different effects in the fast component, affecting spike frequency and spike amplitude. Spike amplitude clearly diminishes at the beginning of a response, but it recovers more slowly than spike frequency after stimulus cessation, suggesting that ORNs return to resting conditions long after they recover a normal spontaneous spike frequency. Moreover, spike amplitude recovery follows the same kinetics as the slow voltage component measured by the LFP, suggesting that both measures are connected.These results were obtained in ab2 and ab3 sensilla in response to two odors at different concentrations. Both spike amplitude and LFP kinetics depend on odorant, concentration and neuron, suggesting that like the EAG they may reflect olfactory information.  相似文献   

7.
The genesis and transmission of action potentials in epidermal cells of the newt (Cynops pyrrhogaster) embryo were investigated with special reference to cellular differentiation during development. Typical action potentials can be recorded from any of the epidermal cells at Stage 31. These potentials consist of a fast spike (18 msec) followed by a slow component (164 msec). The potential is graded with current intensity, and only the slow component initiates action potentials in adjacent cells and induces a transmission to other cells. The fast spike was found in all epidermal cells throughout the embryonic stages examined (Stages 26–47). The slow potential, however, appears at Stage 28, persists until Stage 3637 just before hatching and then disappears at Stage 3842. Electrical recordings from traumatic embryos (embryos without neural crest cells) or from cultured epidermal cell masses isolated from the pregastrula or the ventral region of the neurula, were compared with the intact embryo. No differences were observed in either the form of the action potential or its transmission. Thus these action potentials appear to be derived from epidermal cells, and are not of nervous origin. Evidence suggests that the transient establishment of excitable membranes in epidermal cells during differentiation is closely related to neural cell differentiation.  相似文献   

8.
ABSTRACT. Single cell responses, elicited by each of three components of the pheromone blend of the lightbrown apple moth, Epiphyas postvittana (Walker) (Lepidoptera, Tortricidae), exhibit significant differences in disadaptation rates and effect of stimulation on the spontaneous generation of spikes upon removal of the stimulus. The major component has a disadaptation rate of a few seconds and a sustained effect on the rate of spontaneous spike generation upon removal of the stimulus. Faster disadaptation rates and sharp reduction in the spike rate upon removal of stimulus, were observed for one minor component, 12: Ac, and suggests a likely role in close-range orientation to the female. The second minor component produces two types of response, one of which resembles the major component. The other, more common response, exhibits a very slow rate of disadaptation, of the order of minutes. This characteristic also may have some bearing on search strategies.  相似文献   

9.
The influences of the replacement of sodium with lithium in the extracellular medium on the abnormal spike discharges, caused by two convulsants, metrazol and strychnine, of a giant neurone (TAN, tonically autoactive neurone) identified in the suboesophageal ganglia of the African giant snail (Achatina fulica Férussac) were examined. The slow oscillations of potential caused by metrazol disappeared after this replacement. On the other hand, the abnormal action potentials caused by strychnine, as well as the normal action potentials, still remained after the removal of sodium in the medium.  相似文献   

10.
The membrane potentials of single smooth muscle fibers of various regions of the stomach were measured, and do not differ from those measured in intestinal muscle. Spontaneous slow waves with superimposed spikes could be recorded from the longitudinal and circular muscle of the antrum. The development of tension was preceded by spikes but often tension appeared only when the slow waves were generated. Contracture in high K solution developed at a critical membrane potential of -42 mv. MnCl2 blocked the spike generation, then lowered the amplitude of the slow wave. On the other hand, withdrawal of Na+, or addition of atropine and tetrodotoxin inhibited the generation of most of the slow waves but a spike could still be elicited by electrical stimulation. Prostigmine enhanced and prolonged the slow wave; acetylcholine depolarized the membrane without change in the frequency of the slow waves. Chronaxie for the spike generation in the longitudinal muscle of the antrum was 30 msec and conduction velocity was 1.2 cm/sec. The time constant of the foot of the propagated spike was 28 msec. The space constants measured from the longitudinal and circular muscles of the antrum were 1.1 mm and 1.4 mm, respectively.  相似文献   

11.
Responses were evoked from ganglion cells in catfish and frog retinas by a Gaussian modulation of the mean luminance. An algorithm was devised to decompose intracellularly recorded responses into the slow and spike components and to extract the time of occurrence of a spike discharge. The dynamics of both signals were analyzed in terms of a series of first-through third-order kernels obtained by cross-correlating the slow (analog) or spike (discrete or point process) signals against the white-noise input. We found that, in the catfish, (a) the slow signals were composed mostly of postsynaptic potentials, (b) their linear components reflected the dynamics found in bipolar cells or in the linear response component of type-N (sustained) amacrine cells, and (c) their nonlinear components were similar to those found in either type-N or type-C (transient) amacrine cells. A comparison of the dynamics of slow and spike signals showed that the characteristic linear and nonlinear dynamics of slow signals were encoded into a spike train, which could be recovered through the cross-correlation between the white-noise input and the spike (point process signals. In addition, well-defined spike correlates could predict the observed slow potentials. In the spike discharges from frog ganglion cells, the linear (or first-order) kernels were all inhibitory, whereas the second-order kernels had characteristics of on-off transient excitation. The transient and sustained amacrine cells similar to those found in catfish retina were the sources of the nonlinear excitation. We conclude that bipolar cells and possibly the linear part of the type-N cell response are the source of linear, either excitatory or inhibitory, components of the ganglion cell responses, whereas amacrine cells are the source of the cells' static nonlinearity.  相似文献   

12.
Electrical properties of developing rat heart. Effects of dexamethasone   总被引:1,自引:0,他引:1  
Action potentials recorded from perinatal rat ventricles exhibited a plateau (phase 2), followed by a rapid repolarization characteristics of all mammalian ventricular cells. Within the second postnatal week, a number of distinct changes occurred in the contour of action potentials. An early slow depolarization, at the foot of the action potential, preceded the beginning of phase zero. The early slow depolarization was observed until day 12 and disappeared by day 13. A second slow depolarization occurred during the terminal phase of the rapid upstroke of the action potential, persisted through day 13 and disappeared by day 14. On day 12, what had been a homogeneous contour of action potentials seen during the first week converted into a heterogeneous contour. Occasionally, action potentials similar to those recorded from Purkinje fibres in adult heart were recorded from hearts as young as 12 days. By day 14, signs of a spike (the hallmark of action potentials from adult heart) were apparent in some fibres. Treatment of newborn rats with dexamethasone on the second day after birth prevented the disappearance of the second slow depolarization. In adult and aged rat hearts, dexamethasone treatment induced a slow depolarization and a plateau in the region of overshoot. In view of the time-dependent change of the second slow depolarization it is suggested that this phase of the action potential is influenced by the levels of circulating glucocorticoid in developing heart and by changes in calcium sensitivity observed in this species. Heterogeneity of action potentials observed on day 12 postnatal may precede structural differentiation of myofilaments.  相似文献   

13.
Mechanisms underlying action potential generation in the newt olfactory receptor cell were investigated by using the whole-cell version of the patch-clamp technique. Isolated olfactory cells had a resting membrane potential of -70 +/- 9 mV. Injection of a depolarizing current step triggered action potentials under current clamp condition. The amplitude of the action potential was reduced by lowering external Na+ concentration. After a complete removal of Na+, however, cells still showed action potentials which was abolished either by Ca2+ removal or by an application of Ca2+ channel blocker (Co2+ or Ni2+), indicating an involvement of Ca2+ current in spike generation of newt olfactory receptor cells. Under the voltage clamp condition, depolarization of the cell to -40 mV from the holding voltage of -100 mV induced a fast transient inward current, which consisted of Na+ (INa) and T-type Ca2+ (ICa.T) currents. The amplitude of ICa,T was about one fourth of that of INa. Depolarization to more positive voltages also induced L-type Ca2+ current (ICa,L). ICa,L was as small as a few pA in normal Ringer solution. The activating voltage of ICa,T was approximately 10 mV more negative than that of INa. Under current clamp, action potentials generated by a least effective depolarization was almost completely blocked by 0.1 mM Ni2+ (a specific T-type Ca2+ channel blocker) even in the presence of Na+. These results suggest that ICa,T contributes to action potential in the newt olfactory receptor cell and lowers the threshold of spike generation.  相似文献   

14.
The distal end of a myelinated receptor afferent fiber consists of an unmyelinated terminal membrane which is assumed to be the site of sensory transduction, whereas the action potential encoding appears at a distal node of Ranvier. In the present paper a model of a mammalian myelinated nerve fiber was augmented by an unmyelinated terminal segment into which stimulating current was injected thus modelling the situation at a myelinated receptor afferent fiber. It was found that the introduction of the unmyelinated terminal reduces the repetitive firing rate shown by the model. However, also the amplitude of the spikes at the site of action potential generation diminishes through the large electrical load which the unmyelinated terminal imposes onto the active parts of the nerve fiber model. This "loss" of spike amplitude can abolish the ability of the model to show repetitive activity, if the unmyelinated terminal increases in size. On the other hand, the incorporation of sodium channels into the terminal membrane compensates the spike amplitude reduction introduced by the electrical load of that membrane. This allows repetitive firing at a lower frequency than would be possible for a model with an equivalent sodium-channel-free terminal. The results show that the unmyelinated terminal present at the distal end of myelinated receptor afferent fibers has not only the ability to provide sensory transduction but evokes also a reduction in the discharge rate of the encoding membrane.  相似文献   

15.
To understand the relationship between the propagation direction of action potentials and dendritic Ca(2+) elevation, simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and intradendritic membrane potential were performed in the wind-sensitive giant interneurons of the cricket. The dendritic Ca(2+) transients induced by synaptically-evoked action potentials had larger amplitudes than those induced by backpropagating spikes evoked by antidromic stimulation. The amplitude of the [Ca(2+)](i) changes induced by antidromic stimuli combined with subthreshold synaptic stimulation was not different from that of the Ca(2+) increases evoked by the backpropagating spikes alone. This result means that the synaptically activated Ca(2+) release from intracellular stores does not contribute to enhancement of Ca(2+) elevation induced by backpropagating spikes. On the other hand, the synaptically evoked action potentials were also increased at distal dendrites in which the Ca(2+) elevation was enhanced. When the dendritic and axonal spikes were simultaneously recorded, the delay between dendritic spike and ascending axonal spike depended upon which side of the cercal nerves was stimulated. Further, dual intracellular recording at different dendritic branches illustrated that the dendritic spike at the branch arborizing on the stimulated side preceded the spike recorded at the other side of the dendrite. These results suggest that the spike-initiation site shifts depending on the location of the activated postsynaptic site. It is proposed that the difference of spike propagation manner could change the action potential waveform at the distal dendrite, and could produce synaptic activity-dependent Ca(2+) dynamics in the giant interneurons.  相似文献   

16.
A series of antiarrhythmic drugs was studied on spontaneous spike activity and depolarizing outward potassium current in leech Retzius nerve cells. Propafenone (0.7 μM/ml) produced a cardiac-like action potential with a rapid depolarization followed by a sustained depolarization or plateau, which is terminated after 250 msec by a rapid repolarization. The effect of lidocaine (0.7 μM/ml) on spontaneous spike activity was less pronounced, and early afterdepolarization has been recorded. Amiodarone at the same and much higher concentrations (3 μM/ml) did not generate either a cardiac-like action potential or an early afterdepolarization. In the voltage clamp experiments, fast and slow calcium-activated outward potassium currents were suppressed with propafenone and lidocaine but not with amiodarone. These results suggest that the antiarrhythmic drugs, propafenone and lidocaine modulate calcium-activated potassium channels in leech Retzius nerve cells.  相似文献   

17.
Delaleu  J.C.; Holley  A. 《Chemical senses》1980,5(3):205-218
The effects of the thiol-specific reagent N-ethylmaleimide (NEM)used in the vapour phase have been tested on the olfactory epitheliumof the frog when recording the electro-olfactogram (EOG) andspike activity from single receptor cells. The reagent was deliveredalone or mixed with the odorant isoamyl acetate. At low concentrationthe reagent induced slow potentials resembling simple EOGs.At higher concentrations (20% of the saturated vapour) threenegative and one positive slow components were observed in theresponse. A complex relationship was found between the amplitudeof the slow potential and the concentration of the reagent.Repeated stimulations at high concentration caused the suppressionof the negative voltage transients and the development of thepositive component. NEM vapour elicited spike discharges insome of the recorded units, with the responses resembling thoseevoked by usual odorants. After long-lasting stimulations (30 sec) with NEM, the receptorsfailed to respond to both reagent and odorant. This suppressionof response could be partly prevented by exposing the olfactoryepithelium to the odorant vapour before and during the exposureto the reagent (protection). The results indicate that NEM acts on the olfactory epitheliumin several ways, including an odorant-like action on olfactoryreceptor sites. An effect on the supporting cells is also suggested.Hypotheses for explaining the protection mechanism are considered.  相似文献   

18.
Young (3-days-old) embryonic chick hearts have slowly-rising spontaneous action potentials, dependent on tetrodotoxin-insensitive slow Na+ channels. When the hearts were placed into organ culture for 5-11 days, action potential duration was markedly increased by 260-370%, and a notch appeared between the initial spike phase and the plateau phase in some hearts. The spike amplitude was mainly dependent on [Na]0, whereas the plateau amplitude was dependent on [Ca]0. Thus, the young embryonic hearts develop slow Ca2+-Na+ channels (while retaining the slow Na+ channels) during organ culture, and the spike phase and the plateau phase of the slow action potentials are mainly dependent on currents through slow Na+ channels and through slow Ca2+-Na+ channels, respectively. The effects of Mn2+ (a specific blocker of slow Ca2+-Na+ channels) and verapamil (a blocker of slow Na+ channels as well as of slow Ca2+-Na+ channels) on the spike phase and the plateau phase were examined. Mn2+ (0.5 mM) and verapamil (5 microM) depressed the plateau duration and overshoot. Verapamil did not decrease the maximum rate of rise (Vmax), but Mn++ produced a small, but significant, decrease. High concentrations (10/30 microM) of verapamil depressed the action potential amplitude and Vmax, and abolished the spontaneous action potentials. These results indicate that slow Ca2+-Na+ channels appear de novo during organ culture of young embryonic hearts.  相似文献   

19.
Local tissue acidosis frequently occurs in airway inflammatory and ischemic conditions. The effect of physiological/pathophysiological-relevant low pH (7.0-5.5) on isolated rat vagal pulmonary sensory neurons was investigated using whole cell perforated patch-clamp recordings. In voltage-clamp recordings, vagal pulmonary sensory neurons exhibited distinct pH sensitivities and different phenotypes of inward current in responding to acidic challenge. The current evoked by lowering the pH of extracellular solution to 7.0 consisted of only a transient, rapidly inactivating component with small amplitude. The amplitude of this transient current increased when the proton concentration was elevated. In addition, a slow, sustained inward current began to emerge when pH was reduced to <6.5. The current-voltage curve indicated that the transient component of acid-evoked current was carried predominantly by Na+. This transient component was dose-dependently inhibited by amiloride, a common blocker of acid-sensing ion channels (ASICs), whereas the sustained component was significantly attenuated by capsazepine, a selective antagonist of transient receptor potential vanilloid receptor subtype-1 (TRPV1). The two components of acid-evoked current also displayed distinct recovery kinetics from desensitization. Furthermore, in current-clamp recordings, transient extracellular acidification depolarized the membrane potential and generated action potentials in these isolated neurons. In summary, our results have demonstrated that low pH can stimulate rat vagal pulmonary sensory neurons through the activation of both ASICs and TRPV1. The relative roles of these two current species depend on the range of pH and vary between neurons.  相似文献   

20.
The genesis and transmission of action potentials in epidermal cells of a newt ( Cynops pyrrhogaster ) embryo were investigated quantitatively in vivo during development and in vitro in the absence of nerve cells. Typical action potentials, composed of a fast spike followed by a slow action potential, can be recorded from any of the epidermal cells from Stage 24/25 to 35/36. The potential is graded with current intensity, and only the slow component induces transmission to other epidermal cells. The fast spike is found in all epidermal cells from Stage 24/25 to Stage 50; it is abolished by Stage 52. The slow potential disappears at Stage 38 just before or after hatching. The cultured epithelioid explants (epithelioid aggregate) and cultured monolayer cells taken from the presumptive epidermal tissue of the ectoderm of the pregastrula, indicate that sequential changes in the genesis of the dual action potentials are similar to those of the intact embryo. In monolayer cell culture devoid of nerve cells, the epidermal cells, also generate a two-step action potential. Such two-step potentials are characteristic of both ciliated and non-ciliated epidermal cells and occur even during mitotic activity. In contrast, cultured neural plate cells isolated from the neurula generate typical spike-like action potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号