首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate airway structure-function relations in elastase-induced emphysema in rats. Sprague-Dawley rats were treated intratracheally with 50 IU porcine pancreatic elastase (PPE, n = 8) or saline (controls, n = 6). Six weeks later, lung volumes [functional residual capacity (FRC), residual volume (RV), and total lung capacity (TLC)] and low-frequency impedance parameters (Newtonian resistance, R(N); tissue damping; tissue elastance, H) were measured, and tracheal sounds were recorded during slow inflation to TLC following in vivo degassing. The lungs were fixed and stained for standard morphometry, elastin, and collagen. In the PPE group, FRC and RV were higher [4.53 ± 0.7 (SD) vs. 3.28 ± 0.45 ml; P = 0.003 and 1.06 ± 0.35 vs. 0.69 ± 0.18 ml; P = 0.036, respectively], and H was smaller in the PPE-treated rats than in the controls (1,344 ± 216 vs. 2,178 ± 305 cmH(2)O/l; P < 0.001), whereas there was no difference in R(N). The average number of crackles per inflation was similar in the two groups; however, the crackle size distributions were different and the lower knee of the pressure-volume curves was higher in the PPE group. Microscopic images revealed different alveolar size distributions but similar bronchial diameters in the two groups. The treatment caused a slight but significant decrease in the numbers of alveolar attachments, no difference in elastin and slightly increased mean level and heterogeneity of collagen in the bronchial walls. These results suggest that tissue destruction did not affect the conventionally assessed airway resistance in this emphysema model, whereas the alterations in the recruitment dynamics can be an early manifestation of impaired airway function.  相似文献   

2.
The peripheral lung parenchyma has been studied as a component of the asthmatic inflammatory response. During induced constriction, tissue resistance increases in different asthma models. Approximately 60% of the asthmatic patients show early and late responses. The late response is characterized by more severe airway obstruction. In the present study, we evaluated lung parenchymal strips mechanics in ovalbumin-sensitized guinea pigs, trying to reproduce both early and late inflammatory responses. Oscillatory mechanics of lung strips were performed in a control group (C), in an early response group (ER), and in two late response groups: 17 h (L1) and 72 h (L2) after the last ovalbumin challenge. Measurements of resistance and elastance were obtained before and after ovalbumin challenge in C and ER groups and before and after acetylcholine challenge in all groups. Using morphometry, we assessed the density of eosinophils and smooth muscle cells, as well as collagen and elastin content in lung strips. The baseline and postagonist values of resistance and elastance were increased in ER, L1, and L2 groups compared with C (P < or = 0.001). The morphometric analysis showed an increase in alveolar eosinophil density in ER and L2 groups compared with C (P < 0.05). There was a significant correlation between eosinophil density in parenchymal strips of C, L1, and L2 groups and values of resistance and elastance postacetylcholine (r = 0.71, P = 0.001 and r = 0.74, P < 0.001, respectively). The results show that the lung parenchyma is involved in the late response, and the constriction response in this phase is related to the eosinophilic inflammation.  相似文献   

3.
We developed a network model in an attempt to characterize heterogeneity of tissue elasticity of the lung. The model includes a parallel set of pathways, each consisting of an airway resistance, an airway inertance, and a tissue element connected in series. The airway resistance, airway inertance, and the hysteresivity of the tissue elements were the same in each pathway, whereas the tissue elastance (H) followed a hyperbolic distribution between a minimum and maximum. To test the model, we measured the input impedance of the respiratory system of ventilated normal and emphysematous C57BL/6 mice in closed chest condition at four levels of positive end-expiratory pressures. Mild emphysema was developed by nebulized porcine pancreatic elastase (PPE) (30 IU/day x 6 days). Respiratory mechanics were studied 3 wk following the initial treatment. The model significantly improved the fitting error compared with a single-compartment model. The PPE treatment was associated with an increase in mean alveolar diameter and a decrease in minimum, maximum, and mean H. The coefficient of variation of H was significantly larger in emphysema (40%) than that in control (32%). These results indicate that PPE treatment resulted in increased time-constant inequalities associated with a wider distribution of H. The heterogeneity of alveolar size (diameters and area) was also larger in emphysema, suggesting that the model-based tissue elastance heterogeneity may reflect the underlying heterogeneity of the alveolar structure.  相似文献   

4.
Decorin (Dcn) is an extracellular matrix proteoglycan, which affects airway mechanics, airway-parenchymal interdependence, airway smooth muscle proliferation and apoptosis, and transforming growth factor-β bioavailability. As Dcn deposition is differentially altered in asthma, we questioned whether Dcn deficiency would impact the development of allergen-induced asthma in a mouse model. Dcn(-/-) and Dcn(+/+) mice (C57Bl/6) were sensitized with ovalbumin (OA) and challenged intranasally 3 days/wk × 3 wk. After OA challenge, mice were anesthetized, and respiratory mechanics measured under baseline conditions and after delivery of increasing concentrations of methacholine aerosol. Complex impedance was partitioned into airway resistance and tissue elastance and damping. Bronchoalveolar lavage was performed. Lungs were excised, and tissue sections evaluated for inflammatory cell influx, α-smooth muscle actin, collagen, biglycan, and Dcn deposition. Changes in TH-2 cytokine mRNA and protein were also measured. Airway resistance was increased in OA-challenged Dcn(+/+) mice only (P < 0.05), whereas tissue elastance and damping were increased in both OA-challenged Dcn(+/+) and Dcn(-/-), but more so in Dcn(+/+) mice (P < 0.001). Inflammation and collagen staining within the airway wall were increased with OA in Dcn(+/+) only (P < 0.001 and P < 0.01, respectively, vs. saline). IL-5 and IL-13 mRNA were increased in lung tissue of OA-challenged Dcn(+/+) mice. Dcn deficiency resulted in more modest OA-induced hyperresponsiveness, evident at the level of the central airways and distal lung. Differences in physiology were accompanied by differences in inflammation and remodeling. These findings may be, in part, due to the well-described ability of Dcn to bind transforming growth factor-β and render it less bioavailable.  相似文献   

5.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

6.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

7.

Background

In vivo high-resolution micro-computed tomography allows for longitudinal image-based measurements in animal models of lung disease. The combination of repetitive high resolution imaging with fully automated quantitative image analysis in mouse models of lung fibrosis lung benefits preclinical research. This study aimed to develop and validate such an automated micro-computed tomography analysis algorithm for quantification of aerated lung volume in mice; an indicator of pulmonary fibrosis and emphysema severity.

Methodology

Mice received an intratracheal instillation of bleomycin (n = 8), elastase (0.25U elastase n = 9, 0.5U elastase n = 8) or saline control (n = 6 for fibrosis, n = 5 for emphysema). A subset of mice was scanned without intervention, to evaluate potential radiation-induced toxicity (n = 4). Some bleomycin-instilled mice were treated with imatinib for proof of concept (n = 8). Mice were scanned weekly, until four weeks after induction, when they underwent pulmonary function testing, lung histology and collagen quantification. Aerated lung volumes were calculated with our automated algorithm.

Principal Findings

Our automated image-based aerated lung volume quantification method is reproducible with low intra-subject variability. Bleomycin-treated mice had significantly lower scan-derived aerated lung volumes, compared to controls. Aerated lung volume correlated with the histopathological fibrosis score and total lung collagen content. Inversely, a dose-dependent increase in lung volume was observed in elastase-treated mice. Serial scanning of individual mice is feasible and visualized dynamic disease progression. No radiation-induced toxicity was observed. Three-dimensional images provided critical topographical information.

Conclusions

We report on a high resolution in vivo micro-computed tomography image analysis algorithm that runs fully automated and allows quantification of aerated lung volume in mice. This method is reproducible with low inherent measurement variability. We show that it is a reliable quantitative tool to investigate experimental lung fibrosis and emphysema in mice. Its non-invasive nature has the unique benefit to allow dynamic 4D evaluation of disease processes and therapeutic interventions.  相似文献   

8.
This study describes the use of microdialysis technique for continuous measurement of plasma protein extravasation (PPE) in rat and mouse skin with drug application either intravenously or via the microdialysis fiber. Hollow plasmapheresis fibers (3-cm length, 0.4-mm diameter, cutoff 3,000 kDa) were placed subcutaneously on the back of anesthetized mice and rats. Intravenous injection of dextran (Macrodex, 60 mg/ml) increased PPE by 355% from baseline within 30 min in rats with ligated kidneys (n = 6; P < 0.05) but not in animals with intact kidneys. Phalloidin (500 microg/kg iv 40 min before dextran, n = 6; P < 0.05) did not change the response to dextran in either group. Animals receiving PGE1, compound 48/80 (mice), paclitaxel, docetaxel, and cremophor EL via the microdialysis fiber were also provided with a control fiber receiving vehicle. Both rats and mice had constant PPE in the control fiber, and there was no change in PPE in the NaCl-treated groups (rats, n = 4; mice, n = 6). Application via the fiber of PGE1 (20 microg/ml), compound 48/80 (mice; 4 mg/ml), and docetaxel (0.5 mg/ml) increased PPE compared with baseline within 60 min by 139% (n = 6; P < 0.05), 273% (n = 6; P < 0.05), and 325% (n = 5; P < 0.05), respectively. Phalloidin alone did not increase PPE (n = 5; P < 0.05). Pretreatment with phalloidin did not inhibit the increase after PGE1 or compound 48/80 but inhibited that after docetaxel (n = 6). Paclitaxel (0.6 mg/ml, n = 5) or vehicle (Cremophor) (n = 5) gave no increase in PPE. The results demonstrate that microdialysis can be used to continuously measure changes in PPE after inflammatory challenges in skin of rats and mice.  相似文献   

9.
In the current study, we hypothesize that senescent-dependent changes between airway and lung parenchymal tissues of C57BL/6J (B6) mice are not synchronized with respect to altered lung mechanics. Furthermore, aging modifications in elastin fiber and collagen content of the airways and lung parenchyma are remodeling events that differ with time. To test these hypotheses, we performed quasi-static pressure-volume (PV) curves and impedance measurements of the respiratory system in 2-, 20-, and 26-mo-old B6 mice. From the PV curves, the lung volume at 30 cmH(2)O pressure (V(30)) and respiratory system compliance (Crs) were significantly (P < 0.01) increased between 2 and 20 mo of age, representing about 80-84% of the total increase that occurred between 2 and 26 mo of age. Senescent-dependent changes in tissue damping and tissue elastance were analogous to changes in V(30) and Crs; that is, a majority of the parenchymal alterations in the lung mechanics occurred between 2 and 20 mo of age. In contrast, significant decreases in airway resistance (R) occurred between 20 and 26 mo of age; that is, the decrease in R between 2 and 20 mo of age represented only 29% (P > 0.05) of total decrease occurring through 26 mo. Morphometric analysis of the elastic fiber content in lung parenchyma was significantly (P < 0.01) decreased between 2 and 20 mo of age. To the contrary, increased collagen content was significantly delayed until 26 mo of age (P < 0.01, 2 vs. 26 mo). In conclusion, our data demonstrate that senescent-dependent changes in airway and lung tissue mechanics are not synchronized in B6 mice. Moreover, the reduction in elastic fiber content with age is an early lung remodeling event, and the increased collagen content in the lung parenchyma occurs later in senescence.  相似文献   

10.
Neutrophil elastase has been linked to inflammatory lung diseases such as chronic obstructive pulmonary disease, adult respiratory distress syndrome, emphysema, and cystic fibrosis. In guinea pigs, aerosol challenge with human neutrophil elastase causes bronchoconstriction, but the mechanism by which this occurs is not completely understood. Our laboratory previously showed that human neutrophil elastase releases tissue kallikrein (TK) from cultured tracheal gland cells. TK has been identified as the major kininogenase of the airway and cleaves both high- and low-molecular weight kininogen to yield lysyl-bradykinin. Because inhaled bradykinin causes bronchoconstriction and airway hyperresponsiveness in asthmatic patients and allergic sheep, we hypothesized that elastase-induced bronchoconstriction could be mediated by bradykinin. To test this hypothesis, we measured lung resistance (RL) in sheep before and after inhalation of porcine pancreatic elastase (PPE) alone and after pretreatment with a bradykinin B(2) antagonist (NPC-567), the specific human elastase inhibitor ICI 200,355, the histamine H(1)-antagonist diphenhydramine hydrochloride, the cysteinyl leukotriene 1 receptor antagonist montelukast, or the cyclooxygenase inhibitor indomethacin. Inhaled PPE (125-1,000 microg) caused a dose-dependent increase in RL. Aerosol challenge with a single 500 microg dose of PPE increased RL by 132 +/- 8% over baseline. This response was blocked by pretreatment with NPC-567 and ICI-200,355 (n = 6; P < 0.001), whereas treatment with diphenhydramine hydrochloride, montelukast, or indomethacin failed to block the PPE-induced bronchoconstriction. Consistent with pharmacological data, TK activity in bronchial lavage fluid increased 134 +/- 57% over baseline (n = 5; P < 0.02). We conclude that, in sheep, PPE-induced bronchoconstriction is in part mediated by the generation of bradykinin. Our findings suggest that elastase-kinin interactions may contribute to changes in bronchial tone during inflammatory diseases of the airways.  相似文献   

11.
Endogenously produced nitric oxide is a recognized regulator of physiological lung events, such as a neurotransmitter and a proinflammatory mediator. We tested the differences between chronic and acute nitric oxide inhibition by N(omega)-nitro-L-arginine methyl ester (L-NAME) treatment in lung mechanics, inflammation, and airway remodeling in an experimental asthma model in guinea pigs. Both acute and chronic L-NAME treatment reduced exhaled nitric oxide in sensitized animals (P < 0.001). Chronic L-NAME treatment increased baseline and maximal responses after antigen challenge of respiratory system resistance and reduced peribronchial edema and mononuclear cells airway infiltration (P < 0.05). Acute administration of L-NAME increased maximal values of respiratory system elastance and reduced mononuclear cells and eosinophils in airway wall (P < 0.05). Chronic ovalbumin exposure resulted in airway wall thickening due to an increase in collagen content (P < 0.005). Chronic nitric oxide inhibition increased collagen deposition in airway wall in sensitized animals (P < 0.05). These data support the hypothesis that in this model nitric oxide acts as a bronchodilator, mainly in proximal airways. Furthermore, chronic nitric oxide inhibition was effective in reducing edema and mononuclear cells in airway wall. However, airway eosinophilic inflammation was unaltered by chronic L-NAME treatment. In addition, nitric oxide inhibition upregulates collagen deposition in airway walls.  相似文献   

12.
Phosphodiesterase 4 (PDE4) is an intracellular enzyme specifically degrading cAMP, a second messenger exerting inhibitory effects on many inflammatory cells. To investigate whether GPD-1116 (a PDE4 inhibitor) prevents murine lungs from developing cigarette smoke-induced emphysema, the senescence-accelerated mouse (SAM) P1 strain was exposed to either fresh air or cigarette smoke for 8 wk with or without oral administration of GPD-1116. We confirmed the development of smoke-induced emphysema in SAMP1 [air vs. smoke (means +/- SE); the mean linear intercepts (MLI), 52.9 +/- 0.8 vs. 68.4 +/- 4.2 microm, P < 0.05, and destructive index (DI), 4.5% +/- 1.3% vs. 16.0% +/- 0.4%, P < 0.01]. Emphysema was markedly attenuated by GPD-1116 (MLI = 57.0 +/- 1.4 microm, P < 0.05; DI = 8.2% +/- 0.6%, P < 0.01) compared with smoke-exposed SAMP1 without GPD-1116. Smoke-induced apoptosis of lung cells were also reduced by administration of GPD-1116. Matrix metalloproteinase (MMP)-12 activity in bronchoalveolar lavage fluid (BALF) was increased by smoke exposure (air vs. smoke, 4.1 +/- 1.1 vs. 40.5 +/- 16.2 area/microg protein; P < 0.05), but GPD-1116 significantly decreased MMP-12 activity in smoke-exposed mice (5.3 +/- 2.1 area/microg protein). However, VEGF content in lung tissues and BALF decreased after smoke exposure, and the decrease was not markedly restored by oral administration of GPD-1116. Our study suggests that GPD-1116 attenuates smoke-induced emphysema by inhibiting the increase of smoke-induced MMP-12 activity and protecting lung cells from apoptosis, but is not likely to alleviate cigarette smoke-induced decrease of VEGF in SAMP1 lungs.  相似文献   

13.

Purpose

To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution.

Materials and Methods

Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology.

Results

Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology.

Conclusion

In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections.  相似文献   

14.
Chronic pulmonary obstructive disease (COPD) is the fourth leading cause of death worldwide, however, the pathogenic factors and mechanisms are not fully understood. Pulmonary emphysema is one of the major components of COPD and is thought to result from oxidative stress, chronic inflammation, protease–antiprotease imbalance and lung epithelial (LE) cell apoptosis. In our previous studies, COPD patients were noted to have higher levels of placenta growth factor (PlGF) in serum and bronchoalveolar lavage fluid than controls. In addition, transgenic mice overexpressing PlGF developed pulmonary emphysema and exposure to PlGF in LE cells induced apoptosis. Furthermore, intratracheal instillation of porcine pancreatic elastase (PPE) on to PlGF wild type mice induced emphysema, but not in PlGF knockout mice. Therefore, we hypothesized that PPE generates pulmonary emphysema through the upregulation of PlGF expression in LE cells. The elevation of PlGF then leads to LE cell apoptosis. In the present study, we investigated whether PPE induces PlGF expression, whether PlGF induces apoptosis and whether the downstream mechanisms of PlGF are related to LE cell apoptosis. We found that PPE increased PlGF secretion and expression both in vivo and in vitro. Moreover, PlGF-induced LE cell apoptosis and PPE-induced emphysema in the mice were mediated by c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) pathways. Given these findings, we suggest that the increase in PlGF and PlGF-induced JNK and p38 MAPK pathways contribute to PPE-induced LE cell apoptosis and emphysema. Regulatory control of PlGF and agents against its downstream signals may be potential therapeutic targets for COPD.  相似文献   

15.

Background

Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary inflammation, airways obstruction and emphysema, and is a risk factor for cardiovascular disease (CVD). However, the contribution of these individual COPD components to this increased risk is unknown. Therefore, the aim of this study was to determine the contribution of emphysema in the presence or absence of pulmonary inflammation to the increased risk of CVD, using a mouse model for atherosclerosis. Because smoke is a known risk factor for both COPD and CVD, emphysema was induced by intratracheal instillation of porcine pancreatic elastase (PPE).

Methods

Hyperlipidemic APOE*3-Leiden mice were intratracheally instilled with vehicle, 15 or 30 µg PPE and after 4 weeks, mice received a Western-type diet (WTD). To study the effect of emphysema combined with pulmonary inflammation on atherosclerosis, mice received 30 µg PPE and during WTD feeding, mice were intranasally instilled with vehicle or low-dose lipopolysaccharide (LPS; 1 µg/mouse, twice weekly). After 20 weeks WTD, mice were sacrificed and emphysema, pulmonary inflammation and atherosclerosis were analysed.

Results

Intratracheal PPE administration resulted in a dose-dependent increase in emphysema, whereas atherosclerotic lesion area was not affected by PPE treatment. Additional low-dose intranasal LPS administration induced a low-grade systemic IL-6 response, as compared to vehicle. Combining intratracheal PPE with intranasal LPS instillation significantly increased the number of pulmonary macrophages and neutrophils. Plasma lipids during the study were not different. LPS instillation caused a limited, but significant increase in the atherosclerotic lesion area. This increase was not further enhanced by PPE.

Conclusion

This study shows for the first time that PPE-induced emphysema both in the presence and absence of pulmonary inflammation does not affect atherosclerotic lesion development.  相似文献   

16.
The abdominal muscles expand the rib cage when they contract alone. This expansion opposes the deflation of the lung and may be viewed as pressure dissipation. The hypothesis was raised, therefore, that alterations in rib cage elastance should affect the lung deflating action of these muscles. To test this hypothesis and evaluate the quantitative importance of this effect, we measured the changes in airway opening pressure (Pao), abdominal pressure (Pab), and rib cage transverse diameter during isolated stimulation of the transversus abdominis muscle in anesthetized dogs, first with the rib cage intact and then after rib cage elastance was increased by clamping the ribs and the sternum. Stimulation produced increases in Pao, Pab, and rib cage diameter in both conditions. With the ribs and sternum clamped, however, the change in Pab was unchanged but the change in Pao was increased by 77% (P < 0.001). In a second experiment, the transversus abdominis was stimulated before and after rib cage elastance was reduced by removing the bony ribs 3-8. Although the change in Pab after removal of the the ribs was still unchanged, the change in Pao was reduced by 62% (P < 0.001). These observations, supported by a model analysis, indicate that rib cage elastance is a major determinant of the mechanical coupling between the abdominal muscles and the lung. In fact, in the dog, the effects of rib cage elastance and Pab on the lung-deflating action of the abdominal muscles are of the same order of magnitude.  相似文献   

17.
The aim of this study is to test the hypothesis that the early changes in lung mechanics and the amount of type III collagen fiber do not predict the evolution of lung parenchyma remodeling in pulmonary and extrapulmonary acute lung injury (ALI). For this purpose, we analyzed the time course of lung parenchyma remodeling in murine models of pulmonary and extrapulmonary ALI with similar degrees of mechanical compromise at the early phase of ALI. Lung histology (light and electron microscopy), the amount of elastic and collagen fibers in the alveolar septa, the expression of matrix metalloproteinase-9, and mechanical parameters (lung-resistive and viscoelastic pressures, and static elastance) were analyzed 24 h, 1, 3, and 8 wk after the induction of lung injury. In control (C) pulmonary (p) and extrapulmonary (exp) groups, saline was intratracheally (it; 0.05 ml) instilled and intraperitoneally (ip; 0.5 ml) injected, respectively. In ALIp and ALIexp groups, mice received Escherichia coli lipopolysaccharide (10 microg it and 125 microg ip, respectively). At 24 h, all mechanical and morphometrical parameters, as well as type III collagen fiber content, increased similarly in ALIp and ALIexp groups. In ALIexp, all mechanical and histological data returned to control values at 1 wk. However, in ALIp, static elastance returned to control values at 3 wk, whereas resistive and viscoelastic pressures, as well as type III collagen fibers and elastin, remained elevated until week 8. ALIp showed higher expression of matrix metalloproteinase-9 than ALIexp. In conclusion, insult in pulmonary epithelium yielded fibroelastogenesis, whereas mice with ALI induced by endothelial lesion developed only fibrosis that was repaired early in the course of lung injury. Furthermore, early functional and morphological changes did not predict lung parenchyma remodeling.  相似文献   

18.
Few therapeutic options are offered to treat inflammation and alveolar wall destruction in emphysema. The effect of recombinant human pre-elafin, an elastase inhibitor, was evaluated in porcine pancreatic elastase (PPE)-induced emphysema in C57BL/6 mice. In a first protocol, mice received a single instillation of pre-elafin (17.5 pmol/mouse) at 1 h post-PPE and were sacrificed up to 72 h post-PPE. A single instillation of pre-elafin significantly reduced PPE-induced neutrophil accumulation in lungs, as assessed by bronchoalveolar lavage (BAL), by 51%, 71% and 67% at 24, 48 and 72 h, respectively. In a second protocol, mice also received a single dose of PPE, but pre-elafin three times a week for 2 weeks. After 2 weeks, pre-elafin significantly reduced the PPE-induced increase in BAL macrophage numbers, airspace dimensions and lung hysteresivity by 74%, 62% and 52%, respectively. Since G-CSF was previously shown to reduce emphysematous changes in mice, the BAL levels of this mediator were measured 6 h post-PPE in animals treated as described in the first protocol. Pre-elafin significantly increased G-CSF levels in PPE-exposed mice compared to sham- and PPE only-exposed animals. This suggests that the beneficial effects of pre-elafin could be mediated, at least in part, by its ability to increase G-CSF levels in the lung.  相似文献   

19.
The present study compares the dynamic mechanical properties and the contents of collagen and elastic fibers (oxytalan + elaunin + fully developed elastic fibers) of mice and rat lung strips. Resistance, elastance (E), and hysteresivity (eta) were obtained during sinusoidal oscillations. The relative amounts of blood vessel, bronchial, and alveolar walls, as well as the mean alveolar diameter were determined. In both species, resistance had a negative and E a positive dependence on frequency, whereas eta remained unchanged. Mice showed higher E and lower eta than rats. Although collagen and elastic fiber contents were similar in both groups, mice had more oxytalan and less elaunin and fully developed elastic fibers than rats. Rats showed less alveolar and more blood vessel walls and higher mean alveolar diameter than mice. In conclusion, mice and rats present distinct tissue mechanical properties, which are accompanied by specific extracellular fiber composition.  相似文献   

20.
Absolute lung volumes such as functional residual capacity, residual volume (RV), and total lung capacity (TLC) are used to characterize emphysema in patients, whereas in animal models of emphysema, the mechanical parameters are invariably obtained as a function of transrespiratory pressure (Prs). The aim of the present study was to establish a link between the mechanical parameters including tissue elastance (H) and airway resistance (Raw), and thoracic gas volume (TGV) in addition to Prs in a mouse model of emphysema. Using low-frequency forced oscillations during slow deep inflation, we tracked H and Raw as functions of TGV and Prs in normal mice and mice treated with porcine pancreatic elastase. The presence of emphysema was confirmed by morphometric analysis of histological slices. The treatment resulted in an increase in TGV by 51 and 44% and a decrease in H by 57 and 27%, respectively, at 0 and 20 cmH(2)O of Prs. The Raw did not differ between the groups at any value of Prs, but it was significantly higher in the treated mice at comparable TGV values. In further groups of mice, tracheal sounds were recorded during inflations from RV to TLC. All lung volumes but RV were significantly elevated in the treated mice, whereas the numbers and size distributions of inspiratory crackles were not different, suggesting that the airways were not affected by the elastase treatment. These findings emphasize the importance of absolute lung volumes and indicate that tissue destruction was not associated with airway dysfunction in this mouse model of emphysema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号