首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria use a strategy referred to as two-component signal transduction to sense a variety of stimuli and initiate an appropriate response. Signal processing begins with proteins referred to as histidine kinases. In most cases, these are membrane-bound receptors that respond to environmental cues. Histidine kinases use ATP as a phosphodonor to phosphorylate a conserved histidine residue. Subsequent transfer of the phosphoryl group to a conserved aspartyl residue in the cognate response regulator results in an appropriate output. Recent structural studies of activated (phosphorylated) response regulators and their aspartate-bearing regulatory domains have provided insight into the links between the chemistry and biology of these ubiquitous regulatory proteins. Chemical aspects of their function appear to generalize broadly to enzymes that adopt a phosphoaspartate intermediate.  相似文献   

2.
3.
Two-component and phosphorelay signal transduction systems are central components in the virulence and antimicrobial resistance responses of a number of bacterial and fungal pathogens; in some cases, these systems are essential for bacterial growth and viability. Herein, we analyze in detail the conserved surface residue clusters in the phosphotransferase domain of histidine kinases and the regulatory domain of response regulators by using complex structure-based three-dimensional cluster analysis. We also investigate the protein-protein interactions that these residue clusters participate in. The Spo0B-Spo0F complex structure was used as the reference structure, and the multiple aligned sequences of phosphotransferases and response regulators were paired correspondingly. The results show that a contiguous conserved residue cluster is formed around the active site, which crosses the interface of histidine kinases and response regulators. The conserved residue clusters of phosphotransferase and the regulatory domains are directly involved in the functional implementation of two-component signal transduction systems and are good targets for the development of novel antimicrobial agents.  相似文献   

4.
The ArcB/A two-component signal transduction system of Escherichia coli modulates the expression of numerous operons in response to redox conditions of growth. We demonstrate that the putative arcA and arcB genes of Mannheimia succiniciproducens MBEL55E, a capnophilic (CO2-loving) rumen bacterium, encode functional proteins that specify a two-component system. The Arc proteins of the two bacterial species sufficiently resemble each other that they can participate in heterologous transphosphorylation in vitro, and the arcA and arcB genes of M. succiniciproducens confer toluidine blue resistance to E. coli arcA and arcB mutants. However, neither the quinone analogs (ubiquinone 0 and menadione) nor the cytosolic effectors (d-lactate, acetate, and pyruvate) affect the net phosphorylation of M. succiniciproducens ArcB. Our results indicate that different types of signaling molecules and distinct modes of kinase regulation are used by the ArcB proteins of E. coli and M. succiniciproducens.  相似文献   

5.
Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB‐VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB‐VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved‐signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways.  相似文献   

6.
卢亚兰  唐标  杨华  孙东昌 《微生物学报》2022,62(4):1308-1321
原核生物可利用由CRISPR-Cas系统(clustered regularly interspaced short palindromic repeats-CRISPR associated)介导的适应性免疫机制防御外源核酸入侵.在适应性免疫过程中,原核生物将外源核酸部分片段整合至自身CRISPR阵列中,表达并加工的...  相似文献   

7.
Cytokinin signal transduction in plant cells   总被引:8,自引:0,他引:8  
  相似文献   

8.
葡萄球菌呼吸相关双组分系统SrrAB能感应外界O2浓度,并将信号传至胞内,调控下游基因的转录,以应对外界环境的变化。有研究表明,金黄色葡萄球菌SrrAB在有氧条件下促进毒力因子的表达,抑制生物膜的形成;在厌氧条件下抑制毒力因子的表达,促进生物膜的形成。另外,在有氧及厌氧条件下,金黄色葡萄球菌SrrAB调控生长代谢的途径也不一致。表皮葡萄球菌中也存在类似的双组分系统SrrAB,且与金黄色葡萄球菌SrrAB具有较高同源性,但目前尚不清楚两者在生长代谢及毒力调控方面的异同。结合课题组研究工作,简要综述葡萄球菌SrrAB的调控机制,着重比较其在有氧及厌氧条件下的调控差异,这对临床诊治葡萄球菌引起的感染具有一定的借鉴意义。  相似文献   

9.
Du L  Jiao F  Chu J  Jin G  Chen M  Wu P 《Genomics》2007,89(6):697-707
In this report we define the genes of two-component regulatory systems in rice through a comprehensive computational analysis of rice (Oryza sativa L.) genome sequence databases. Thirty-seven genes were identified, including 5 HKs (cytokinin-response histidine protein kinase) (OsHK1–4, OsHKL1), 5 HPs (histidine phosphotransfer proteins) (OsHP1–5), 15 type-A RRs (response regulators) (OsRR1–15), 7 type B RR genes (OsRR16–22), and 5 predicted pseudo-response regulators (OsPRR1–5). Protein motif organization, gene structure, phylogenetic analysis, chromosomal location, and comparative analysis between rice, maize, and Arabidopsis are described. Full-length cDNA clones of each gene were isolated from rice. Heterologous expression of each of the OsHKs in yeast mutants conferred histidine kinase function in a cytokinin-dependent manner. Nonconserved regions of individual cDNAs were used as probes in expression profiling experiments. This work provides a foundation for future functional dissection of the rice cytokinin two-component signaling pathway.  相似文献   

10.
Conserved signal transduction pathways that use phosphorelay from histidine kinases through an intermediate transfer protein (H2) to response regulators have been found in a variety of eukaryotic microorganisms. Several of these pathways are linked to mitogen-activated protein kinase cascades. These networks control different physiological responses including osmoregulation, cAMP levels and cellular morphogenesis.  相似文献   

11.
12.
Species of the genus Streptomyces are major bacteria responsible for producing most natural antibiotics. Streptomyces coelicolor A3(2) and Streptomyces avermitilis were sequenced in 2002 and 2003, respectively. Two-component signal transduction systems (TCSs), consisting of a histidine sensor kinase (SK) and a cognate response regulator (RR), form the most common mechanism of transmembrane signal transduction in prokaryotes. TCSs in S. coelicolor A3(2) have been analyzed in detail. Here, we identify and classify the SK and RR of S. avermitilis and compare the TCSs with those of S. coelicolor A3(2) by computational approaches. Phylogenetic analysis of the cognate SK-RR pairs of the two species indicated that the cognate SK-RR pairs fall into four classes according to the distribution of their orthologs in other organisms. In addition to the cognate SK-RR pairs, some potential partners of non-cognate SK-RR were found, including those of unpaired SK and orphan RR and the cross-talk between different components in either strain. Our study provides new clues for further exploration of the molecular regulation mechanism of streptomycetes with industrial importance.  相似文献   

13.
Bacterial cells possess a signal transduction system that differs from those described in higher organisms, including human cells. These so-called two-component signal transduction systems (TCSs) consist of a sensor (histidine kinase, HK) and a response regulator, and are involved in cellular functions, such as virulence, drug resistance, biofilm formation, cell wall synthesis, cell division. They are conserved in bacteria across all species. Although TCSs are often studied and characterized individually, they are assumed to interact with each other and form signal transduction networks within the cell. In this review, I focus on the formation of TCS networks via connectors. I also explore the possibility of using TCS inhibitors, especially HK inhibitors, as alternative antimicrobial agents.  相似文献   

14.
MAP kinase cascades in elicitor signal transduction   总被引:3,自引:0,他引:3  
 Protein kinases play important roles in elicitor signal transduction. In this article, I describe the current view of the role of mitogen-activated protein kinase (MAPK) cascades in elicitor signal transduction of plant cells based on our own research and recent developments in this field. In the past several years, it has become apparent that MAPK cascades play important roles in elicitor signal transduction in plants. Our early studies demonstrated the identification of p47 MAPK in tobacco as an elicitor-responsive protein kinase and possible involvement of p47 MAPK in elicitor signal transduction to induce defense responses, including defense gene expression and hypersensitive cell death. However, the molecular identity of p47 MAPK is still unclear. Recent important studies suggest that tobacco MAPK cascades that include SIPK, and/or WIPK, and NtMEK2, an upstream kinase for both SIPK and WIPK, have a crucial function in induction of defense responses and hypersensitive cell death. The orthologs of these protein kinases in Arabidopsis and alfalfa are also suggested to have similar functions. Furthermore, the identification of loss-of-function mutation in Arabidopsis reveals a negative regulatory role for putative MAPK cascades in plant defense mechanisms. Received: February 7, 2002 / Accepted: February 25, 2002  相似文献   

15.
Two-component systems, which are comprised of a single histidine-aspartate phosphotransfer module, are the dominant signaling pathways in bacteria and have recently been identified in several eukaryotic organisms as well. A tandem connection of two or more histidine-aspartate motifs forms complex phosphorelays. While response regulators from simple two-component systems have been characterized structurally in their inactive and active forms, we address here the question of whether a response regulator from a phosphorelay has a distinct structural basis of activation. We report the NMR solution structure of BeF(3)(-)-activated Spo0F, the first structure of a response regulator from a phosphorelay in its activated state. Conformational changes were found in regions previously identified to change in simple two-component systems. In addition, a downward shift by half a helical turn in helix 1, located on the opposite side of the common activation surface, was observed as a consequence of BeF(3)(-) activation. Conformational changes in helix 1 can be rationalized by the distinct function of phosphoryl transfer to the second histidine kinase, Spo0B, because helix 1 is known to interact directly with Spo0B and the phosphatase RapB. The identification of structural rearrangements in Spo0F supports the hypothesis of a pre-existing equilibrium between the inactive and active state prior to phosphorylation that was suggested on the basis of previous NMR dynamics studies on Spo0F. A shift of a pre-existing equilibrium is likely a general feature of response regulators.  相似文献   

16.
Production of plant cell wall degrading enzymes, the major virulence factors of soft-rot Pectobacterium species, is controlled by many regulatory factors. Pectobacterium carotovorum ssp. carotovorum SCC3193 encodes an Rcs phosphorelay system that involves two sensor kinases, RcsC(Pcc) and RcsD(Pcc), and a response regulator RcsB(Pcc) as key components of this system, and an additional small lipoprotein RcsF(Pcc). This study indicates that inactivation of rcsC(Pcc), rcsD(Pcc) and rcsB(Pcc) enhances production of virulence factors with the highest effect detected for rcsB(Pcc). Interestingly, mutation of rcsF(Pcc) has no effect on virulence factors synthesis. These results suggest that in SCC3193 a parallel phosphorylation mechanism may activate the RcsB(Pcc) response regulator, which acts as a repressor suppressing the plant cell wall degrading enzyme production. Enhanced production of virulence factors in Rcs mutants is more pronounced when bacteria are growing in the absence of plant signal components.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号