首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In serum-containing medium, ascorbic acid induces maturation of prehypertrophic chick embryo sternal chondrocytes. Recently, cultured chondrocytes have also been reported to undergo maturation in the presence of bone morphogenetic proteins or in serum-free medium supplemented with thyroxine. In the present study, we have examined the combined effect of ascorbic acid, BMP-2, and serum-free conditions on the induction of alkaline phosphatase and type X collagen in chick sternal chondrocytes. Addition of either ascorbate or rhBMP-2 to nonconfluent cephalic sternal chondrocytes produced elevated alkaline phosphatase levels within 24–72 h, and simultaneous exposure to both ascorbate and BMP yielded enzyme levels at least threefold those of either inducer alone. The effects of ascorbate and BMP were markedly potentiated by culture in serum-free medium, and alkaline phosphatase levels of preconfluent serum-free cultures treated for 48 h with BMP + ascorbate were equivalent to those reached in serum-containing medium only after confluence. While ascorbate addition was required for maximal alkaline phosphatase activity, it did not induce a rapid increase in type X collagen mRNA. In contrast, BMP added to serum-free medium induced a three- to fourfold increase in type X collagen mRNA within 24 h even in the presence of cyclohexamide, indicating that new protein synthesis was not required. Addition of thyroid hormone to serum-free medium was required for maximal ascorbate effects but not for BMP stimulation. Neither ascorbate nor BMP induced alkaline phosphatase activity in caudal sternal chondrocytes, which do not undergo hypertrophy during embryonic development. These results indicate that ascorbate + BMP in serum-free culture induces rapid chondrocyte maturation of prehypertrophic chondrocytes. The mechanisms for ascorbate and BMP action appear to be distinct, while BMP and thyroid hormone may share a similar mechanism for induction. J. Cell. Biochem. 66:394–403, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Late cartilage differentiation during endochondral bone formation is a multistep process. Chondrocytes transit through a differentiation cascade under the direction of environmental signals that either stimulate or repress progression from one step to the next. In human costal cartilage, chondrocytes reach very advanced stages of late differentiation and express collagen X. However, remodeling of the tissue into bone is strongly repressed. The second hypertrophy marker, alkaline phosphatase, is not expressed before puberty. Upon sexual maturity, both alkaline phosphatase and collagen X activity levels are increased and slow ossification takes place. Thus, the expression of the two hypertrophy markers is widely separated in time in costal cartilage. Progression of endochondral ossification in this tissue beyond the stage of hypertrophic cartilage appears to be associated with the expression of alkaline phosphatase activity. Costal chondrocytes in culture are stimulated by parathyroid hormone in a PTH/PTHrP receptor-mediated manner to express the fully differentiated hypertrophic phenotype. In addition, the hormone stimulates hypertrophic development even more powerfully through its carboxyterminal domain, presumably by interaction with receptors distinct from PTH/PTHrP receptors. Therefore, PTH can support late cartilage differentiation at very advanced stages, whereas the same signal negatively controls the process at earlier stages.  相似文献   

3.
Mouse endochondral chondrocytes were immortalized with a temperature- sensitive simian virus 40 large tumor antigen. Several clonal isolates as well as pools of immortalized cells were characterized. In monolayer cultures at the temperature permissive for the activity of the large tumor antigen (32 degrees C), the cells grew continuously with a doubling time of approximately 2 d, whereas they stopped growing at nonpermissive temperatures (37 degrees C-39 degrees C). The cells from all pools and from most clones expressed the genes for several markers of hypertrophic chondrocytes, such as type X collagen, matrix Gla protein, and osteopontin, but had lost expression of type II collagen mRNA and failed to be stained by alcian blue which detects cartilage- specific proteoglycans. The cells also contained mRNAs for type I collagen and bone Gla protein, consistent with acquisition of osteoblastic-like properties. Higher levels of mRNAs for type X collagen, bone Gla protein, and osteopontin were found at nonpermissive temperatures, suggesting that the expression of these genes was upregulated upon growth arrest, as is the case in vivo during chondrocyte hypertrophy. Cells also retained their ability to respond to retinoic acid, as indicated by retinoic acid dose-dependent and time- dependent increases in type X collagen mRNA levels. These cell lines, the first to express characteristic features of hypertrophic chondrocytes, should be very useful to study the regulation of the type X collagen gene and other genes activated during the last stages of chondrocyte differentiation.  相似文献   

4.
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 microM), and dihydrocytochalasin B (3, 10, 20 microM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid-treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15-20-fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 microM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two-dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two-dimensional gel electrophoresis along the study.  相似文献   

5.
《The Journal of cell biology》1994,126(5):1311-1318
Epiphyseal chondrocytes cultured in a medium containing 10% serum may be maintained as three dimensional aggregates and differentiate terminally into hypertrophic cells. There is an attendant expression of genes encoding type X collagen and high levels of alkaline phosphatase activity. Manipulation of the serum concentration to optimal levels of 0.1 or 0.01% in this chondrocyte pellet culture system results in formation of features of developing cartilage architecture which have been observed exclusively in growth cartilage in vivo. Cells are arranged in columns radiating out from the center of the tissue, and can be divided into distinct zones corresponding to the recognized stages of chondrocyte differentiation. Elimination of the optimal serum concentration in a chemically defined medium containing insulin eliminates the events of terminal differentiation of defined cartilage architecture. Chondrocytes continue to enlarge into hypertrophic cells and synthesize type X collagen mRNA and protein, but in the absence of the optimal serum concentration, alkaline phosphatase activity does not increase and the cells retain a random orientation. Addition of thyroxine to the chemically defined medium containing insulin and growth hormone results in dose-dependent increases in both type X collagen synthesis and alkaline phosphatase activity, and reproduces the optimal serum-induced morphogenesis of chondrocytes into a columnar pattern. These experiments demonstrate the critical role of thyroxine in cartilage morphogenesis.  相似文献   

6.
The myc oncogene is expressed by proliferating quail embryo chondrocytes (QEC) grown as adherent cells and is repressed in QEC maintained in suspension culture. To investigate the interference of myc expression during chondrocyte differentiation, QEC were infected with a retrovirus carrying the v-myc oncogene (QEC-v-myc). Uninfected or helper virus-infected QEC were used as control. In adherent culture, QEC-v-myc displayed a chondrocytic phenotype and synthesized type II collagen and Ch21 protein, while control chondrocytes synthesized type I and type II collagen with no Ch21 protein detected as long as the attachment to the plastic was kept. In suspension culture, QEC-v-myc readily aggregated and within 1 week the cell aggregates released small single cells; still they secreted only type II collagen and Ch21 protein. In the same conditions control cell aggregates released hypertrophic chondrocytes producing type II and type X collagens and Ch21 protein. In the appropriate culture conditions, QEC-v-myc reconstituted a tissue defined as nonhypertrophic, noncalcifying cartilage by the high cellularity, the low levels of alkaline phosphatase enzymatic activity, and the absence of type X collagen synthesis and of calcium deposition. We conclude that the constitutive expression of the v-myc oncogene keeps chondrocytes in stage I (active proliferation and synthesis of type II collagen) and prevents these cells from reconstituting hypertrophic calcifying cartilage.  相似文献   

7.
The cells that express the genes for the fibrillar collagens, types I, II, III and V, during callus development in rabbit tibial fractures healing under stable and unstable mechanical conditions were localized. The fibroblast-like cells in the initial fibrous matrix express types I, III and V collagen mRNAs. Osteoblasts, and osteocytes in the newly formed membranous bone under the periosteum, express the mRNAs for types I, III and V collagens, but osteocytes in the mature trabeculae express none of these mRNAs. Cartilage formation starts at 7 days in calluses forming under unstable mechanical conditions. The differentiating chondrocytes express both types I and II collagen mRNAs, but later they cease expression of type I collagen mRNA. Both types I and II collagens were located in the cartilaginous areas. The hypertrophic chondrocytes express neither type I, nor type II, collagen mRNA. Osteocalcin protein was located in the bone and in some cartilaginous regions. At 21 days, irrespective of the mechanical conditions, the callus consists of a layer of bone; only a few osteoblasts lining the cavities now express type I collagen mRNA.We suggest that osteoprogenitor cells in the periosteal tissue can differentiate into either osteoblasts or chondrocytes and that some cells may exhibit an intermediate phenotype between osteoblasts and chondrocytes for a short period. The finding that hypertrophic chondrocytes do not express type I collagen mRNA suggests that they do not transdifferentiate into osteoblasts during endochondral ossification in fracture callus.  相似文献   

8.
9.
Cell-based cartilage resurfacing requires ex vivo expansion of autologous articular chondrocytes. Defined culture conditions minimize expansion-dependent phenotypic alterations but maintenance of the cells' differentiation potential must be carefully assessed. Transforming growth factor β-1 (TGF β-1) positively regulates the expression of several cartilage proteins, but its therapeutic application in damaged cartilage is controversial. Thus we evaluated the phenotypic outcomes of cultured human articular chondrocytes exposed to TGF β-1 during monolayer expansion in a serum-free medium. After five doublings cells were transferred to micromass cultures to assess their chondrogenic differentiation, or replated in osteogenic medium. Immunocytostainings of micromasses of TGF-expanded cells showed loss of aggrecan and type II collagen. Positivity was evidenced for RAGE, IHH, type X collagen and for apoptotic cells, paralleling a reduction of BCL-2 levels, suggesting hypertrophic differentiation. TGF β-1-exposed cells also evidenced increased mRNA levels for bone sialoprotein, osteopontin, matrix metalloproteinase-13, TIMP-3, VEGF and SMAD7, enhanced alkaline phosphatase activity and pyrophosphate availability. Conversely, SMAD3 mRNA and protein contents were reduced. After osteogenic induction, only TGF-expanded cells strongly mineralized and impaired p38 kinase activity, a contributor of chondrocytes' differentiation. To evaluate possible endochondral ossification progression, we seeded the chondrocytes on hydroxyapatite scaffolds, subsequently implanted in an in vivo ectopic setting, but cells failed to reach overt ossification; nonetheless, constructs seeded with TGF-exposed cells displayed blood vessels of the host vascular supply with enlarged diameters, suggestive of vascular remodeling, as in bone growth. Thus TGF-exposure during articular chondrocytes expansion induces a phenotype switch to hypertrophy, an undesirable effect for cells possibly intended for tissue-engineered cartilage repair.  相似文献   

10.
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 μM), and dihydrocytochalasin B (3, 10, 20 μM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid‐treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15–20‐fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 μM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two‐dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two‐dimensional gel electrophoresis along the study. J. Cell. Biochem. 76:84–98, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
During endochondral ossification, resting and proliferating chondrocytes mature into hypertrophic chondrocytes that initiate synthesis of type X collagen. The mechanisms regulating the differential expression of type X collagen gene were examined in confluent Day 12 secondary cultures of chick vertebral chondrocytes in monolayer treated with the vitamin A analog retinoic acid (RA). Preliminary results showed that major effects of RA on chondrocyte gene expression occurred between 24 and 48 h of treatment. Thus in subsequent experiments cultures were treated for 24, 30, 36, 42, 48, 72, 96, and 120 h. Total RNAs were isolated and analyzed by hybridization with 32P-labeled plasmid probes coding for five matrix macromolecules including type X collagen. We found that the steady-state levels of mRNAs for the large keratan sulfate/chondroitin sulfate proteoglycan (KS:CS-PG) core protein and type II collagen decreased several fold between 24 and 48 h of treatment compared to untreated cells, and remained low with further treatment. In sharp contrast, the level of type X collagen mRNA increased threefold by 42 h of treatment; thereafter it began to decrease and reached minimal levels by 72–120 h of treatment. The changes in steady-state mRNA levels during RA regimen paralleled similar changes in relative rates of protein synthesis. The transient up-regulation of type X collagen gene expression at 42 h of treatment was preceded by a five-fold increase in fibronectin gene expression, was followed by a several fold increase in type I collagen gene expression, and was accompanied by cell flattening and loss of the pericellular proteoglycan matrix. Thus, RA treatment leads to a unique biphasic modulation of type X collagen gene expression in maturing chondrocyte cultures. The underlying, RA-sensitive mechanisms effecting this modulation may reflect those normally regulating the differential expression of this collagen gene during endochondral ossification.  相似文献   

12.
In the developing chick embryo tibia type X collagen is synthesized by chondrocytes from regions of hypertrophy and not by chondrocytes from other regions (Capasso, O., G. Tajana, and R. Cancedda, 1984, Mol. Cell. Biol. 4:1163-1168; Schmid, T. M., and T. F. Linsenmayer, 1985, Dev. Biol. 107:375-381). To investigate further the relationship between differentiation of endochondral chondrocytes and type X collagen synthesis we have developed a novel culture system for chondrocytes from 29-31-stage chick embryo tibiae. At the beginning of the culture these chondrocytes are small and synthesize type II and not type X collagen, but when grown on agarose-coated dishes they further differentiate into hypertrophic chondrocytes that synthesize type X collagen. The synthesis of type X collagen has been monitored in cultured cells by analysis of labeled collagens and in vitro translation of mRNAs. When the freshly dissociated chondrocytes are plated in anchorage-permissive dishes, most of the cells attach and dedifferentiate, as revealed by their fibroblastic morphology. Dedifferentiated chondrocytes, after several passages, can still reexpress the differentiated phenotype and continue their development to hypertrophic, type X collagen-synthesizing chondrocytes. Hypertrophic chondrocytes, when plated in anchorage permissive dishes, attach, maintaining the differentiated phenotype, and continue the synthesis of type X collagen.  相似文献   

13.
14.
15.
To examine the role of bone morphogenetic protein (BMP) signaling in chondrocytes during endochondral ossification, the dominant negative (DN) forms of BMP receptors were introduced into immature and mature chondrocytes isolated from lower and upper portions of chick embryo sternum, respectively. We found that control sternal chondrocyte populations expressed type IA, IB, and II BMP receptors as well as BMP-4 and -7. Expression of a DN-type II BMP receptor (termed DN-BMPR-II) in immature lower sternal (LS) chondrocytes led to a loss of differentiated functions; compared with control cells, the DN-BMPR- II–expressing LS chondrocytes proliferated more rapidly, acquired a fibroblastic morphology, showed little expression of type II collagen and aggrecan genes, and upregulated type I collagen gene expression. Expression of DN-BMPR-II in mature hypertrophic upper sternal (US) chondrocytes caused similar effects. In addition, the DN-BMPR-II–expressing US cells exhibited little alkaline phosphatase activity and type X collagen gene expression, while the control US cells produced both alkaline phosphatase and type X collagen. Both DN-BMPR-II–expressing US and LS chondrocytes failed to respond to treatment with BMP-2 . When we examined the effects of DN forms of types IA and IB BMP receptors, we found that DN-BMPR-IA had little effect, while DN-BMPR-IB had similar but weaker effects compared with those of DN-BMPR-II. We conclude that BMP signaling, particularly that mediated by the type II BMP receptor, is required for maintenance of the differentiated phenotype, control of cell proliferation, and expression of hypertrophic phenotype.  相似文献   

16.
17.
Chondrocytes from chicken embryo tibia can be maintained in culture as adherent cells in Coon's modified Ham's F-12 medium supplemented with 10% FCS. In this condition, they dedifferentiate, losing type II collagen expression in favor of type I collagen synthesis. Their differentiation to hypertrophy can be obtained by transferring them to suspension culture. Differentiation is evidenced by the shift from type I to type II and type IX collagen synthesis and the following predominant expression of type X collagen, all markers of specific stages of the differentiation process. To identify the factors required for differentiation, we developed a serum-free culture system where only the addition of triiodothyronine (T3; 10(-11) M), insulin (60 ng/ml), and dexamethasone (10(-9) M) to the F-12 medium was sufficient to obtain hypertrophic chondrocytes. In this hormonal context, chondrocytes display the same changes in the pattern of protein synthesis as described above. For proper and complete cell maturation, T3 and insulin concentrations cannot be modified. Insulin cannot be substituted by insulin-like growth factor-I, but dexamethasone concentration can be decreased to 10(-12) M without chondrogenesis being impaired. In the latter case, the expression of type X collagen and its mRNA are inversely proportional to dexamethasone concentration. When ascorbic acid is added to the hormone-supplemented medium, differentiating chondrocytes organize their matrix leading to a cartilage-like structure with hypertrophic chondrocytes embedded in lacunae. However, this structure does not present detectable calcification, at variance with control cultures maintained in FCS. Accordingly, in the presence of the hormone mixture, the differentiating chondrocytes have low levels of alkaline phosphatase activity. This report indicates that T3 and insulin are primary factors involved in the onset and progression of chondrogenesis, while dexamethasone supports cell viability and modulates some differentiated functions.  相似文献   

18.
19.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

20.
In this study we describe the collagen pattern synthesized by differentiating fetal human chondrocytes in vitro and correlate type X collagen synthesis with an intracellular increase of calcium and with matrix calcification. We show that type II collagen producing fetal human epiphyseal chondrocytes differentiate in suspension culture over agarose into hypertrophic cells in the absence of ascorbate, in contrast to chicken chondrocytes which have been shown to require ascorbate for hypertrophic differentiation. Analysis of the collagen synthesis by metabolic labeling and immunoprecipitation as well as by immunofluorescence double staining with anti type I, II or X collagen antibodies revealed that type X collagen synthesis was initiated during the third week. After 4 weeks culture over agarose we identified cells staining for both type I and X collagen, indicating further differentiation of chondrocytes to a new type of 'post-hypertrophic' cell. This cell type, descending from a type X collagen producing chondrocyte, is different from the previously described 'dedifferentiated' or 'modulated' types I and III collagen producing cell derived from a type II collagen producing chondrocyte. The appearance of type I collagen synthesis in agarose cultures was confirmed by metabolic labeling and immunoprecipitation and challenges the current view that the chondrocyte phenotype is stable in suspension cultures. An increase in the intracellular calcium concentration from 100 to 250 nM was measured about one week after onset of type X collagen synthesis. First calcium deposits were detected by alizarine red S staining in type X collagen positive cell nodules after 4 weeks, again in the absence of ascorbate. From these observations we conclude a sequence of events ultimately leading to matrix calcification in chondrocyte nodules in vitro that begins with chondrocyte hypertrophy and the initiation of type X collagen synthesis, followed by the increase of intracellular calcium, the deposition of calcium mineral, and finally by the onset of type I collagen synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号