共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
硅藻土在青霉素G酰化酶提纯中的应用 总被引:1,自引:0,他引:1
国产硅藻土经氢氧化铵处理后可用于从发酰液中直接取青霉素G酰化酶,平均吸附量为90U/g。吸附的酶可用22%硫酸胺-0.3mol/L PBS(pH8.0)溶液洗脱。平均比活18U/mg蛋白(NIPAB法)。硅藻土可反复使用。苯乙酰胺-Sepharose 4B树脂可对酶作进一步的纯化。 相似文献
4.
固定化青霉素酰化酶的研究 总被引:7,自引:4,他引:7
将巨大芽孢杆菌胞外青霉素酰化酶通过共价键连接到醋酸纤维素载体上,制成的固定化青霉素酰化酶的表观活力达2000 u/g左右(PDAB法)。水解lO%(w/v)的青霉素G钾盐落液,使用30批,保留活力70%以上。6-氨基青毒烷酸(6-APA)总收率平均达88.37%。固定化青霉素酰化酶水解青霉素G的最适pH为9.95,最适温度为55℃,表观米氏常数为1.093×10-2mol/L,在pH 5.8-10.7,温度45℃以下酶的活力稳定。 相似文献
5.
大肠杆菌青霉素酰化酶的提纯及其性质的研究 总被引:1,自引:1,他引:1
大肠杆菌(Escherichia coli) AS 1.70发酵液经有机溶剂处理,硫酸铵分级,再用聚丙烯酰胺垂直板凝胶电泳进行纯化,得到了聚丙烯酰胺凝肢电泳均一的青霉素酰化酶纯品。纯酶作用的最适温度为45—55℃,最适pH为7.0—7.7,在无NIPAB存在下,纯酶在45℃以下稳定,但在55℃保温一小时,酶活力残存33.58%,纯酶在pH5.0—8.0稳定。酶作用于重排酸的米氏常数为3.33×10-2g/ml。Ag+对酶有抑制作用。用聚丙烯酰胺薄层凝胶等电聚焦测定酶的等电点(pI)为6.7—6.8,用SDS凝胶电泳测酶的亚基分子量分别为14300和58900。纯酶具有水解苯甘氨酸甲酯盐酸盐的作用,反应两小时产生12.74mM苯甘氨酸。 相似文献
6.
以短小杆菌(B.pumilus)B-97为出发菌株,经过连续两次紫外线诱变处理,分离得一突变株B-U-29。其酶活力为4.56U/ml,较出发菌株酶活力提高113.3%。对B-U-29菌株进行连续两次亚硝酸处理,分离得一正变稳定株B—H-29,酶活力为4.93u/ml,较出发菌株酶活力提高了20%。 相似文献
7.
8.
本研究用缺口以链法对肠杆菌青霉素G酰化酶(PGA)基因Ser177进行寡核苷酸定点突变。通过NIPAB(2-硝基-5-苯乙酰胺苯甲酸)试纸法筛选和测序鉴定,获得突变体Cys177,Gly177,Arg177和Asn177。它们的PGA活性均已丧失。酶蛋白电泳分析表明突变体蛋白在体内正常表达。推测PGA Ser177秀可能位于酶底物结合中心,是酶活性所必需,不能被置换。 相似文献
9.
一株产多种β-内酰胺类抗生素酰化酶菌株的筛选 总被引:1,自引:0,他引:1
为了从大量的候选菌株中快速筛选头孢菌素酰化酶产生菌,设计并合成了一系列头孢菌素酰化酶的底物类似物。这些酰胺类的底物类似物由二部分组成,一部分为与头孢菌素相同或相似的侧链,另外一部分为发色基团或便于检测的基团。它们被酰化酶水解酰胺键以后可以方便快速的检测,因此用于对大量菌株进行快速筛选。采用这些化合物筛选到6株酰化酶阳性菌株。其中菌株ZH0650能够同时水解GL-7ACA和多个底物类似物。进一步研究表明,该菌至少产生3种酰化酶,AD-NABA酰化酶,青霉素G酰化酶和头孢菌素C酰化酶。我们初步纯化了AD-NABA酰化酶和青霉素G酰化酶,并对头孢菌素C酰化酶的活力进行了鉴定。这是首次报道的可以产生青霉素G酰化酶和头孢菌素酰化酶等多种酰化酶的菌株,具有良好的应用前景。 相似文献
10.
大肠杆菌青霉素G酰化酶基因及其邻近区域的核苷酸全序列 总被引:3,自引:2,他引:3
Some of microorganisms have been known to possess penicillin G acylase activity. The E. coli derived penicillin G acylase (PGA) can catalyze the conversion of penicillin G into phenylacetic acid and 6-amino-penicillanic acid, the latter is used as the starting compound for the industrial formation of semi-synthetic penicillins. Apart from its industrial importance, the enzyme PGA displays a number of interesting properties. Catalytically active enzyme is localized in the periplasmic space of E. coli cells and composed of two dissimilar subunits. The two subunits are apparently produced from a precursor protein, via a processing pathway hitherto unique in its features for a prokaryotic enzyme. The studies on processing of the precursor and on the relationship between structure and function of the mature enzyme are important theoretically. Previously we cloned a 3.5 kb DNA fragment from a strain (E. coli AS 1.76), which displays PGA activity. In this paper, we report a nucleotide sequence of the 3.5 kb DNA fragment containing PGA gene. After insertion of the DNA fragment into EcoR I and Hind III sites in pWR 13, pPGA 20 had been obtained. We subcloned the Hind III and Bg1 II treated fragment of 1.6 kb in length from pPGA 20 into Hind III and BamH I sites of pWR 13 to get a pPGA 1.6, and Bg1 II and EcoR I treated fragment of 1.9 kb in length into BamH I and EcoR I sites of pWR 13 to get a pPGA 1.9. The linearized pPGA 1.9 which were digested with appropriate restriction enzymes were progressively shortened from both ends respectively by digestion with Bal 31 nuclease, followed by cleavage of shortened target DNA off vector DNA molecules with appropriate restriction enzymes. The series of the DNA fragments shortened from EcoR I end were then cloned into plasmid pWR 13 which had previously digested with Hind III and Sma I enzymes (Fig. 1). The DNA fragment cloned in pWR 13 were directly sequenced on the resulted plasmids by using primer I and primer II. Thus we have obtained the complete nucleotide sequence of the 3.5 kb DNA fragment. The 3.5 kb fragment contains an intact PGA gene which is 2.6 kb.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
11.
定点突变提高青霉素G酰化酶的稳定性 总被引:6,自引:1,他引:6
以大肠杆菌青霉素G酰化酶的晶体结构为模板 ,用软件PMODELING同源模建巨大芽孢杆菌青霉素G酰化酶的三维结构。在此基础上 ,将 β亚基 4 2 7位 (突变A)和 4 3 0位 (突变B)赖氨酸残基突变为丙氨酸 ,降低了该酶的等电点 ,增加了疏水性 ,从而提高其在酸性和有机溶剂环境中的稳定性。两个突变体与亲本相比 ,比活力和Km相近 ,最适pH减少了 0 .5个单位 ,突变B在 pH 5 .2的溶液中的稳定性明显提高。突变A和B在 15 %DMF中的半衰期分别比亲本酶提高了 60 %和 166% 相似文献
12.
13.
国产硅藻土经氢氧化铵处理后可用于从发酰液中直接取青霉素G酰化酶,平均吸附量为90U/g。吸附的酶可用22%硫酸铵-0.3mol/LPBS(pH8.0)溶液洗脱。平均比18U/18Umg蛋白(NIPAB法)。硅藻土可反复使用。苯乙酰胺-Sepharose4B树脂可对酶作进一步的纯化。 相似文献
14.
运用动力学方法研究了微波对青霉素酰化酶(pK1和pK2分别为5.69-6.06和11.56)催化反应性能的影响。结果显示:使用微波解冻档对青霉素酰化酶进行一定时间的预处理后,能够加速酶的水解反应。酶液的最适处理时间为15 s,微波处理后,酶的最适温度为从原来的37℃上升到40℃,操作稳定性基本不变。对最适微波条件处理后的青霉素酰化酶pH值依赖性催化反应进行研究,从logVm和log(Vm/Km)与pH值关系曲线计算得到该酶的pK1和pK2分别为5.66-6.55和11.05。 相似文献
15.
以环氧乙烷为活性基的多孔颗粒状固定化青霉素酰化酶的制备 总被引:1,自引:0,他引:1
报道了用以环氧乙烷为活性基的多孔颗粒状载体(Eupergit-C)制备固定由巨大芽孢杆菌(B.megaterium)产生的青霉素酰化酶的研究。用已二胺,赖氨酸对载体进行化学修饰后制备固定化酶,获得了较好的固定结果。用未修饰的载体制备固化酶,经24h固定反应,酶活力达176.5IU/g(wet),酶活力总叫率达53.7%,酶蛋白的固定量为19=7mg/g(dr),酶蛋白的固定效率达87.5%。游离酶的酶浓度对制备固定化酶的活力无显影响。当加酶量从312IU/g(dry)上升到6250IU/g(dry)时,固定化酶活力从89IU/g(wet)上升到475IU/g(wet),总收率和固定化效率分别从99%和99%下降到26.5%和32.5%,酶蛋白的固定量从6.9mg/g(dry)上升到112mg/g(dry),酶蛋白的固定效率从99%下降至80.5%。以酶活力为155IU/g(wet),酶蛋白固定量为22mg/g(dry)的固定化酶水解青霉素G钾盐,经过20批循环水解后,剩余酶活力为92.5%。 相似文献
16.
青霉素在临床上的大量使用造成了细菌的耐药性增强,青霉素本身又具有不宜口服、过敏性强等缺点,人们正致力于研究有诸多优良特性的半合成青霉素。大肠杆菌青霉素酰化酶用于裂解青霉素生产6-氨基青霉烷酸(即6-APA,半合成青霉素的重要中间体),该酶的提取、纯化和固定化研究在半合成青霉素工业有重要的意义[1]。大肠杆菌青霉素酰化酶属胞内酶,文献报道多采用超声波法提取,该法得到的粗酶液比活低,一般要经过四、五步纯化才能得到较高比活[2,3,4]的酶液。采用渗透压冲击法提取青霉素酰化酶,得到的粗酶液比活高,只需经过硫酸铵沉淀一步纯化就… 相似文献
17.
用EcoR I—Pst I双酶解的pBR322作为克隆载体,从大肠杆菌D816染色体克隆了青霉素酰化酶基因,这个基陶位于9.1Kb EcoRI片段上。所得克隆株整体细胞酶学特性与大肠杆菌D816一致,酶反应最适温度为55℃,最适pH为7.8—8.0。以青霉素G作为底物时Km为10.3mM,转化产物为6一氨基青霉烷酸。克隆株大肠杆菌c600(pPAl)合成青霉索酰化酶仍需苯乙酸诱导并被葡萄糖阻遏,细胞青霉素酰化酶的活性比大肠杆菌c P1(高2—4倍。 相似文献
18.
19.
青霉素酰化酶固定化前后动力学行为的比较 总被引:1,自引:0,他引:1
在优化的固定化条件下,通过戊二醛交联直接将青霉素酰化酶固定化。在优化的环境条件下测定游离酶和两种固定化酶的动力学常数。结果表明,尽管固定化酶的米氏常数增大,但产物抑制作用减弱,裂解青霉素的实验结果表明,固定化酶更适合在工业上应用。 相似文献
20.