首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the association between rate of cholesterol esterification in plasma depleted of apolipoprotein B-containing lipoproteins (FER(HDL)), atherogenic index of plasma (AIP) [(log (TG/HDL-C)], concentrations, and size of lipoproteins and changes in coronary artery stenosis in participants in the HDL-Atherosclerosis Treatment Study. A total of 160 patients was treated with simvastatin (S), niacin (N), antioxidants (A) and placebo (P) in four regimens. FER(HDL) was measured using a radioassay; the size and concentration of lipoprotein subclasses were determined by nuclear magnetic resonance spectroscopy. The S+N and S+N+A therapy decreased AIP and FER(HDL), reduced total VLDL (mostly the large and medium size particles), decreased total LDL particles (mostly the small size), and increased total HDL particles (mostly the large size). FER(HDL) and AIP correlated negatively with particle sizes of HDL and LDL, positively with VLDL particle size, and closely with each other (r = 0.729). Changes in the proportions of small and large lipoprotein particles, which were reflected by FER(HDL) and AIP, corresponded with findings on coronary angiography. Logistic regression analysis of the changes in the coronary stenosis showed that probability of progression was best explained by FER(HDL) (P = 0.005). FER(HDL) and AIP reflect the actual composition of the lipoprotein spectrum and thus predict both the cardiovascular risk and effectiveness of therapy. AIP is already available for use in clinical practice as it can be readily calculated from the routine lipid profile.  相似文献   

2.
Dietary sphingomyelin (SM) is hydrolyzed by intestinal alkaline sphingomyelinase and neutral ceramidase to sphingosine, which is absorbed and converted to palmitic acid and acylated into chylomicron triglycerides (TGs). SM digestion is slow and is affected by luminal factors such as bile salt, cholesterol, and other lipids. In the gut, SM and its metabolites may influence TG hydrolysis, cholesterol absorption, lipoprotein formation, and mucosal growth. SM accounts for approximately 20% of the phospholipids in human plasma lipoproteins, of which two-thirds are in LDL and VLDL. It is secreted in chylomicrons and VLDL and transferred into HDL via the ABCA1 transporter. Plasma SM increases after periods of large lipid loads, during suckling, and in type II hypercholesterolemia, cholesterol-fed animals, and apolipoprotein E-deficient mice. SM is thus an important amphiphilic component when plasma lipoprotein pools expand in response to large lipid loads or metabolic abnormalities. It inhibits lipoprotein lipase and LCAT as well as the interaction of lipoproteins with receptors and counteracts LDL oxidation. The turnover of plasma SM is greater than can be accounted for by the turnover of LDL and HDL particles. Some SM must be degraded via receptor-mediated catabolism of chylomicron and VLDL remnants and by scavenger receptor class B type I receptor-mediated transfer into cells.  相似文献   

3.
Oxidative modification of lipoproteins may play a crucial role in the pathogenesis of atherosclerosis. This study was designed to examine whether increased lipid peroxides and/or oxidative susceptibility of plasma lipoproteins occur in patients with coronary artery disease. The levels of lipid peroxides, estimated as thiobarbituric acid-reactive substances (TBARS), were significantly greater in the plasma and very low density lipoprotein (VLDL) of symptomatic patients with coronary artery disease than in those of healthy persons, but the TBARS levels of low density lipoprotein (LDL) and high density lipoprotein (HDL) showed insignificant difference between patients and normals. To evaluate the oxidative susceptibility of lipoproteins, we employed in vitro Cu2+ oxidation of lipoproteins monitored by changes in fluorescenece, TBARS level, trinitrobenzene sulfonic acid (TNBS) reactivity, apolipoprotein immunoreactivity and agarose gel electrophoretic mobility. While VLDL and LDL of normal controls were oxidazed at 5–10 μM Cu2+, pooled VLDL and LDL of patients with coronary artery disease were oxidized at 1–2.5 μM Cu2+, i.e., at relatively lowver oxidative stress. At 5 μM Cu2+, VLDL and LDL of patients with coronary artery disease still showed at faster oxidation rate, judged by the rate of fluorescence increase, higher TBARS level, less TNBS reactivity, greater change in apo B immunoreactivity and higher electrophoretic mobility than those of normal controls. However, the difference on the oxidizability of HDL was insignificant for patients vs. normals. In conclusion, we have shown that plasm VLDL and LDL of patients with coronary artery disease are more susceptible to in vitro oxidative modification than those of health persons. The data suggest that enhanced oxidizability of plasma lipoproteins may be important factor influencing the development of coronary artery disease.  相似文献   

4.
Lipoprotein(a), Lp(a), is an atherogenic lipoprotein consisting of an LDL like core particle and a covalently linked glycoprotein of variable size. Lp(a), isolated from serum always contains LDL and HDL(2) as contaminants since Lp(a) floats in the density range 1.05-1.12 g/ml which overlaps that of LDL and HDL(2). Purified Lp(a) is increasingly needed as a standard to overcome various problems in the standardization of Lp(a) measurements and for in vitro biological studies. Problems inherent to the purification of Lp(a) include the aggregation of Lp(a) with LDL, overlapping size distribution and the inability of some fractions to bind to affinity columns. Here, we describe the development of a new method to purify Lp(a) from contaminating LDL and HDL(2) particles. Lp(a) was isolated from serum by sequential ultracentrifugation, resolved by native polyacrylamide gel electrophoresis and the gel segments were electroeluted to obtain pure Lp(a). l-Proline was added to the sample to a final concentration of 0.1 M to prevent the aggregation of Lp(a) with LDL.  相似文献   

5.
We compared two HPLC methods (anion exchange [AE] and steric exclusion [SE]) for analysis of mouse lipoprotein profiles by determining coefficients of variability (CVs) under varying conditions. CVs for AE and SE were comparable on fresh samples. There was an inverse relationship between subfraction curve area and CV [r = -0.65 (AE) and -0.50 (SE)], consistent with the interpretation that as curve area decreased, error variance increased and signal-to-noise ratio decreased. Sample storage did not affect SE. In contrast, with AE, alterations in measured lipoproteins were apparent after storage, including a decrease in the HDL subfraction [66.8% (baseline) vs. 15.9% (1 week); P < 0.01] and an increase in areas under LDL and VLDL peaks. Concomitant with decreasing HDL area, reproducibility deteriorated with the duration of storage. Analysis of the effects of decreasing sample injectate volume to <25 microl on SE lipoprotein subfractions revealed that areas under LDL and VLDL peaks decreased and persisted as volume was decreased further. Areas under all lipoprotein subfractions measured with either AE or SE were linearly correlated with the amount of cholesterol [r = 0.69 (AE) and 0.87 (SE)]. Both AE and SE yield reproducible, accurate, and rapid measurements of lipoproteins from small amounts of serum. AE yields more sensitive, high-amplitude, well-defined peaks that can be easily distinguished and necessitates the use of smaller sample volumes compared with SE, but sample storage causes alterations in the chromatogram. SE appears better suited to serial analyses involving stored samples.  相似文献   

6.
Very low density lipoprotein (VLDL)-remnants, prepared by extrahepatic circulation of VLDL, labeled biosynthetically in the cholesterol (ester) moiety, were injected intravenously into rats in order to determine the relative contribution of parenchymal and non-parenchymal liver cells to the hepatic uptake of VLDL-remnant cholesterol (esters). 82.7% of the injected radioactivity is present in liver, measured 30 min after injection. The non-parenchymal liver cells contain 3.1±0.1 times the amount of radioactivity per mg cell protein as compared to parenchymal cells. The hepatic uptake of biosynthetically labeled (screened) low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterolesters amounts to 26.8% and 24.4% of the injected dose, measured 6 h after injection. The non-parenchymal cells contain 4.3±0.8 and 4.1±0.7 times the amount of radioactivity per mg cell protein as compared to parenchymal cells for LDL and HDL, respectively. It is concluded that in addition to parenchymal cells, the non-parenchymal cells play an important role in the hepatic uptake of cholesterolesters from VLDL-remnants, LDL and HDL.  相似文献   

7.
本文将密度梯度、离心力和离心时间作适当的组合和配比:即不连续密度梯度1.000—1,400g/mlNaBr溶液、离心力168,000g、22小时,10℃,在Beckman L8-80型、区带头Ti-14一次超速离心将血清中四种主要脂蛋白和无脂血清相互分开,获得五个明显的蛋白峰。前四个峰经琼脂糖电泳,聚丙烯酰胺电泳,免疫双扩散和分析超速离心鉴定分别为VLDL、LDL、HDL_2和HDL_3,不含清蛋白。峰五为无脂血清,仅含0.046mg/dl胆固醇和0.2mg/dl甘油三酯,本法重复性佳,分离样品多(50ml),效果好,操作简单,并可延长离心机头的使用期限。已用于研究各种因素对脂蛋白含量的影响及其代谢间的相互关系。  相似文献   

8.
Summary The transport of 125I-labeled serum lipoproteins through the aortic endothelium was studied by radioautography. Rat aorta and heart was perfused in vitro with a medium containing human very low density (VLDL), low density (LDL), high density lipoprotein (HDL), delipidated HDL apolipoprotein or rat HDL. In all lipoproteins more than 95% of the radioactivity was TCA precipitable and lipid radioactivity was from 2–4% in HDL, 4–6% in LDL, 7–15% in VLDL. After 18–60 min of perfusion and wash with unlabeled medium, most of the aortic radioactivity was TCA precipitable and the percent of lipid counts was similar to that in the original lipoprotein. Following perfusion with VLDL, LDL, or HDL the radioautographic reaction was seen over the endothelium, the subendothelial space and the inner media, and was separated by an unlabeled zone from the reaction present over the adventitia. Uniform labeling of the entire wall was found after perfusion with HDL apolipoprotein. The presence of silver grains over endothelial cells in regions rich in plasmalemmal vesicles suggested that these organelles participate in the transport of the labeled lipoprotein, as was shown for lactoperoxidase (Stein and Stein, 1972). The present data indicate that cholesterol may enter the aortic wall as a constituent of lipoprotein particles. Since an HDL particle carries less than 1/20 of the cholesterol present in a LDL particle, it seems that the lower susceptibility of the female to atheromatosis might be related to the higher ratio of HDL to LDL particles in the female serum.The excellent technical help of Miss R. Ben-Moshe, Mrs. A. Mandeles, Mr. G. Hollander and Mrs. Y. Dabach is gratefully acknowledged. This study was supported in part by grants from National Institute of Health (No. 06-101-1), United States Public Health Service; Delegation Generale a la Recherche Scientifique et Technique of the French Government and from the Ministry of Health, the Government of Israel.  相似文献   

9.
10.
In this work, we investigated the impact of testosterone deficiency and cholesteryl ester transfer protein (CETP) expression on lipoprotein metabolism and diet-induced atherosclerosis. CETP transgenic mice and nontransgenic (nTg) littermates were studied 4 weeks after bilateral orchidectomy or sham operation. Castrated mice had an increase in the LDL fraction (+36% for CETP and +79% for nTg mice), whereas the HDL fraction was reduced (-30% for CETP and -11% for nTg mice). Castrated mice presented 1.7-fold higher titers of anti-oxidized LDL (Ox-LDL) antibodies than sham-operated controls. Plasma levels of CETP, lipoprotein lipase, and hepatic lipase were not changed by castration. Kinetic studies showed no differences in VLDL secretion rate, VLDL-LDL conversion rate, or number of LDL and HDL receptors. Competition experiments showed lower affinity of LDL from castrated mice for tissue receptors. Diet-induced atherosclerosis studies showed that testosterone deficiency increased by 100%, and CETP expression reduced by 44%, the size of aortic lesion area in castrated mice. In summary, testosterone deficiency increased plasma levels of apolipoprotein B-containing lipoproteins (apoB-LPs) and anti-OxLDL antibodies, decreased LDL receptor affinity, and doubled the size of diet-induced atherosclerotic lesions. The expression of CETP led to a milder increase of apoB-LPs and reduced atherosclerotic lesion size in testosterone-deficient mice.  相似文献   

11.
Free cholesterol is a potent regulator of lipid transfer protein function   总被引:6,自引:0,他引:6  
This study investigates the effect of altered lipoprotein free cholesterol (FC) content on the transfer of cholesteryl ester (CE) and triglyceride (TG) from very low- (VLDL), low- (LDL), and high-(HDL) density lipoproteins by the plasma-derived lipid transfer protein (LTP). The FC content of VLDL and HDL was selectively altered by incubating these lipoproteins with FC/phospholipid dispersions of varying composition. FC-modified lipoproteins were then equilibrated with [3H] TG, [14C]CE-labeled lipoproteins of another class to facilitate the subsequent modification of the radiolabeled donor lipoproteins. LTP was added and the extent of radiolabeled TG and CE transfer determined after 1 h. With either LDL or VLDL as lipid donor, an increase in the FC content of these lipoproteins caused a concentration-dependent inhibition (up to 50%) of CE transfer from these particles, without any significant effect on TG transfer. In contrast, with HDL as donor, increasing the HDL FC content had little effect on CE transfer from HDL, but markedly stimulated (up to 2.5-fold) the transfer of TG. This differential effect of FC on the unidirectional transfer of radiolabeled lipids from VLDL and HDL led to marked effects on LTP-facilitated net mass transfer of lipids. During long-term incubation of a constant amount of LTP with FC-modified VLDL and HDL, the extent of net mass transfer was linearly related to lipoprotein FC content; a 4-fold increase in FC content resulted in a 3-fold stimulation of the CE mass transferred to VLDL, which was coupled to an equimolar, reciprocal transfer of TG mass to HDL. Since lipid transfer between lipoproteins is integral to the process of reverse cholesterol transport, we conclude that lipoprotein FC levels are a potent, positive regulator of the pathways involved in sterol clearance. FC may modulate lipid transfer by altering the availability of CE and TG to LTP at the lipoprotein surface.  相似文献   

12.
We have measured the rates of insertion into, desorption from, and spontaneous interlayer translocation (flip-flop) of the fluorescent lysophospholipid derivative NBD-lyso-1-myristoylphosphatidylethanolamine in l(d) and l(o) phase lipid bilayer membranes. The lipid bilayers, studied as LUV, were prepared from pure 1-palmitoyl-2-oleoylphosphatidylcholine, in the l(d) phase; and from two Chol-containing binary lipid mixtures, 1-palmitoyl-2-oleoylphosphatidylcholine and Chol (molar ratio of 1:1) and SpM and Chol (molar ratio of 6:4), both in the l(o) phase. Insertion, desorption, and translocation rate constants and equilibrium constants for association of the amphiphile monomer with the lipid bilayers were measured between 15 degrees C and 35 degrees C, and the standard free energies, enthalpies, and entropies, as well as the activation energies for these processes were derived from these data. The equilibrium partition coefficients for partitioning of the amphiphile between the aqueous phase and the different membrane phases were also derived, and an estimation was made of hypothetical partition coefficients and the respective energetic parameters for partitioning between the different lipid phases if these were to coexist in the same membrane. We show that, contrary to general belief, the association of NBD-lysoMPE with lipid bilayers is not a diffusion-controlled process, the rate-limiting step in insertion being the formation of a free area in the membrane surface of an adequate size for insertion to occur.  相似文献   

13.
At a given level of serum cholesterol, patients with T2D have an increased risk of developing atherosclerosis compared with nondiabetic subjects. We hypothesized that T2D patients have an increased interstitial fluid (IF)-to-serum gradient ratio for LDL, due to leakage over the vascular wall. Therefore, lipoprotein profiles in serum and IF from 35 T2D patients and 35 healthy controls were assayed using fast performance liquid chromatography. The IF-to-serum gradients for VLDL and LDL cholesterol, as well as for apoB, were clearly reduced in T2D patients compared with healthy controls. No such differences were observed for HDL cholesterol. Contrary to our hypothesis, the atherogenic VLDL and LDL particles were not increased in IF from diabetic patients. Instead, they were relatively sparser than in healthy controls. The most probable explanation to our unexpected finding is that these lipoproteins are more susceptible to retainment in the extravascular space of these patients, reflecting a more active uptake by, or adhesion to, tissue cells, including macrophages in the vascular wall. Further studies are warranted to further characterize the mechanisms underlying these observations, which may be highly relevant for the understanding of why the propensity to develop atherosclerosis is increased in T2D.  相似文献   

14.
The purpose of this study was to test the use of human hepatocarcinoma HepG2 cells as a model for studying the formation and secretion of human hepatic lipoproteins. To this end, we determined the rate of accumulation and percent composition of neutral lipids and apolipoproteins in the culture medium of HepG2 cells and isolated and partially characterized the apolipoprotein B (ApoB) containing lipoprotein particles. The rates of accumulation in the medium of HepG2 cells, grown in minimum essential medium during a 24-h incubation, of triglycerides, cholesterol, and cholesterol esters expressed as microgram/(g of cell protein X h) were 373 +/- 55, 167 +/- 14, and 79 +/- 10, respectively; the secretion rates for apolipoproteins B, A-I, E, A-II, and C-III were 372 +/- 36, 149 +/- 14, 104 +/- 13, 48 +/- 4, and 13 +/- 1 microgram/(g of cell protein X h), respectively. The major portion of ApoB was present in very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) (84%), with the remainder occurring in high-density lipoproteins (HDL) (16%). Approximately 10-13% of ApoA-I and ApoA-II were present in VLDL and LDL, while 60% of ApoE occurred in HDL and 40% in VLDL and LDL. To separate ApoB-containing lipoproteins, secreted lipoproteins were fractionated by either sequential immunoprecipitation or immunoaffinity chromatography with antibodies to ApoB and ApoE. Results showed that 60-70% of ApoB occurred in the culture medium as lipoprotein B (LP-B) and 30-40% as lipoprotein B:E (LP-B:E). Both ApoB-containing lipoproteins represent polydisperse systems of spherical particles ranging in size from 100 to 350 A for LP-B and from 200 to 500 A for LP-B:E. LP-B particles were identified in VLDL, LDL, and HDL, while LP-B:E particles were only present in VLDL and LDL. The major neutral lipid of both ApoB-containing lipoproteins was triglyceride (50-70% of the total neutral lipid content); cholesterol and cholesterol esters were present in equal amounts. The LP-B:E particles contained 70-90% ApoB and 10-30% ApoE. The ApoB was identified in both types of particles as B-100. A time study on the accumulation of ApoB-containing lipoproteins showed that LP-B particles were secreted independently of LP-B:E particles.  相似文献   

15.
在兔主动脉平滑肌细胞 ( SMC)培养基中分别加入正常低密度脂蛋白 ( N- LDL)、氧化低密度脂蛋白 ( ox- LDL)、正常极低密度脂蛋白 ( N- VLDL)、氧化极低密度脂蛋白 ( ox- VLDL)和 β-极低密度脂蛋白 (β- VLDL )培养 2 4 h后 ,用定量 RT- PCR和配体结合实验检测平滑肌细胞 LRP的m RNA和蛋白质水平的表达 .结果表明 :五种脂蛋白均能在转录和翻译水平诱导兔主动脉平滑肌细胞的 LRP表达 ,尤以富含胆固醇的 N- LDL ,ox- LDL和β- VLDL的刺激作用更明显 .用胆固醇单独或与脂蛋白共同温育 SMC后 ,发现胆固醇本身可促进 SMC的 LRP蛋白水平的表达 ,脂蛋白与胆固醇的共同刺激作用更为显著 .结果提示 :上述五种脂蛋白对 SMC上 LRP的表达有上调作用 ,其机制可能主要是通过其中的胆固醇来实现的 .  相似文献   

16.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

17.
Atherosclerotic plaques result from the excessive deposition of cholesterol esters derived from lipoproteins and lipoprotein fragments. Tissue macrophage within the intimal space of major arterial vessels have been shown to play an important role in this process. We demonstrate in a transfection system using two human cell lines that the macrophage scavenger receptor CD36 selectively elicited lipid uptake from Cu(2+)-oxidized high density lipoprotein (HDL) but not from native HDL or low density lipoprotein (LDL). The uptake of oxHDL displayed morphological and biochemical similarities with the CD36-dependent uptake of oxidized LDL. CD36-mediated uptake of oxidized HDL by macrophage may therefore contribute to atheroma formation.  相似文献   

18.
Plasma lipoprotein concentration, composition, and size were evaluated in two common familial forms of hypertriglyceridemia and compared with those in normal subjects. The very low density lipoproteins (VLDL) were triglyceride-enriched in familial hypertriglyceridemia (triglyceride/apoprotein B ratio: 25.7 +/- 8.9) as compared to normal (9.6 +/- 12.2, P < 0.001) or familial combined hyperlipidemia (9.7 +/- 3.3, P < 0.001). The diameter of VLDL was larger in familial hypertriglyceridemia (3.27 +/- 0.28 pm) than in familial combined hyperlipidemia (2.87 +/- 0.16 pm, P < 0.02). Although in familial hypertriglyceridemia VLDL tended to be larger, and in familial combined hyperlipidemia VLDL tended to be smaller than normal (3.08 +/- 0.48 pm), neither of these differences were significant. While VLDL was normally distributed in the control population, the size was skewed to larger particles in familial hypertriglyceridemia with fewer small particles (P < 0.05) and skewed to smaller particles in familial combined hyperlipidemia with fewer large particles (P < 0.05). VLDL was reciprocally related to low density lipoproteins (LDL) in familial combined hyperlipidemia (r = -0.80 to -0.87) suggesting that the concentrations of these individual lipoprotein groups were somehow interrelated. There was no significant relationship between these two lipoprotein classes in familial hypertriglyceridemia or in normals. In familial combined hyperlipidemia, the apoprotein A-I/A-II ratio was below normal (P < 0.01) suggestive of low HDL(2) levels. This change in apoprotein composition was independent of VLDL or LDL concentration. In familial hypertriglyceridemia, high density lipoprotein (HDL) cholesterol was reduced (33% below mean normal) and HDL triglyceride was increased (by 46%), while the concentration of apoA-I and apoA-II was normal. VLDL triglyceride was inversely related to HDL cholesterol in familial hypertriglyceridemia (r = -0.74, P < 0.005), but not in familial combined hyperlipidemia. The large, triglyceride-enriched VLDL observed in familial hypertriglyceridemia is compatible with the reported increase in VLDL triglyceride synthesis seen in this disorder. The increase in VLDL apoprotein B synthesis previously reported in familial combined hyperlipidemia was associated with VLDL of normal composition. The changes in HDL cholesterol in these two disorders might reflect exchange of triglyceride between VLDL and HDL or could be related to transfer of surface components during the catabolism of VLDL. The reciprocal relationship between various components of VLDL and LDL seen in familial combined hyperlipidemia, but not in familial hypertriglyceridemia or in normal subjects, might provide some insight into the pathological abnormalities in these disorders. The differences between these two common familial forms of hypertriglyceridemia provide further support that they are distinct entities.-Brunzell, J. D., J. J. Albers, A. Chait, S. M. Grundy, E. Groszek, and G. B. McDonald. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia.  相似文献   

19.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

20.
We previously established that proteinuria alters the apolipoprotein content of lipoproteins. This study was conducted to establish whether proteinuria also alters the concentrations of oxidized lipids within lipoprotein density fractions. To this end, we induced passive Heymann nephritis in Sprague Dawley rats and measured an array of alkaline-stable oxylipids in VLDL, LDL, and HDL particles. Proteinuria increased the total oxylipid amounts in the HDL and VLDL fractions. More importantly, these levels were increased when expressed per unit lipoprotein protein, indicating that the oxidized lipid load per particle was increased. Epoxides and diols increased approximately 2-fold in HDL and approximately 5-fold in VLDL, whereas LDL showed approximately 2-fold decreases. The hydroxyeicosatetraenoic acids and hydroxyoctadecadienoic acids (HODEs) increased >4-fold in HDL and >20-fold in VLDL, whereas LDL showed approximately 2-fold decreases in the HODEs. Therefore, nephrotic syndrome alters the lipoprotein oxylipid composition independently of an increase in total lipoprotein levels. These proteinuria-induced changes may be associated with the cardiovascular risk of lipoprotein oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号