首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endemic cichlid fishes in Lake Victoria are a model system for speciation through adaptive radiation. Although the evolution of the sex-determination system may also play a role in speciation, little is known about the sex-determination system of Lake Victoria cichlids. To understand the evolution of the sex-determination system in these fish, we performed cytogenetic analysis in 11 cichlid species from Lake Victoria. B chromosomes, which are present in addition to standard chromosomes, were found at a high prevalence rate (85%) in these cichlids. In one species, B chromosomes were female-specific. Cross-breeding using females with and without the B chromosomes demonstrated that the presence of the B chromosomes leads to a female-biased sex ratio in this species. Although B chromosomes were believed to be selfish genetic elements with little effect on phenotype and to lack protein-coding genes, the present study provides evidence that B chromosomes have a functional effect on female sex determination. FISH analysis using a BAC clone containing B chromosome DNA suggested that the B chromosomes are derived from sex chromosomes. Determination of the nucleotide sequences of this clone (104.5 kb) revealed the presence of several protein-coding genes in the B chromosome, suggesting that B chromosomes have the potential to contain functional genes. Because some sex chromosomes in amphibians and arthropods are thought to be derived from B chromosomes, the B chromosomes in Lake Victoria cichlids may represent an evolutionary transition toward the generation of sex chromosomes.  相似文献   

2.
3.
4.
Phylogenetic analysis of cichlid fishes using nuclear DNA markers   总被引:7,自引:2,他引:5  
The recent explosive adaptive radiation of cichlids in the great lakes of Africa has attracted the attention of both morphologists and molecular biologists. To decipher the phylogenetic relationships among the various taxa within the family Cichlidae is a prerequisite for answering some fundamental questions about the nature of the speciation process. In the present study, we used the random amplification of polymorphic DNA (RAPD) technique to obtain sequence differences between selected cichlid species. We then designed specific primers based on these sequences and used them to amplify template DNA from a large number of species by the polymerase chain reaction (PCR). We sequenced the amplified products and searched the sequences for indels and shared substitutions. We identified a number of such characters at three loci-- DXTU1, DXTU2, and DXTU3--and used them for phylogenetic and cladistic analysis of the relationships among the various cichlid groups. Our studies assign an outgroup position to Neotropical cichlids in relation to African cichlids, provide evidence for a sister-group relationship of tilapiines to the haplochromines, group Cyphotilapia frontosa with the lamprologines of Lake Tanganyika, place Astatoreochromis alluaudi to an outgroup position with respect to other haplochromines of Lakes Victoria and Malawi, and provide additional support for the monophyly of the remaining Lake Victoria haplochromines and the Lake Malawi haplochromines. The described approach holds great promise for further resolution of cichlid phylogeny.   相似文献   

5.
Parasites may have strong eco‐evolutionary interactions with their hosts. Consequently, they may contribute to host diversification. The radiation of cichlid fish in Lake Victoria provides a good model to study the role of parasites in the early stages of speciation. We investigated patterns of macroparasite infection in a community of 17 sympatric cichlids from a recent radiation and 2 older species from 2 nonradiating lineages, to explore the opportunity for parasite‐mediated speciation. Host species had different parasite infection profiles, which were only partially explained by ecological factors (diet, water depth). This may indicate that differences in infection are not simply the result of differences in exposure, but that hosts evolved species‐specific resistance, consistent with parasite‐mediated divergent selection. Infection was similar between sampling years, indicating that the direction of parasite‐mediated selection is stable through time. We morphologically identified 6 Cichlidogyrus species, a gill parasite that is considered a good candidate for driving parasite‐mediated speciation, because it is host species‐specific and has radiated elsewhere in Africa. Species composition of Cichlidogyrus infection was similar among the most closely related host species (members of the Lake Victoria radiation), but two more distantly related species (belonging to nonradiating sister lineages) showed distinct infection profiles. This is inconsistent with a role for Cichlidogyrus in the early stages of divergence. To conclude, we find significant interspecific variation in parasite infection profiles, which is temporally consistent. We found no evidence that Cichlidogyrus‐mediated selection contributes to the early stages of speciation. Instead, our findings indicate that species differences in infection accumulate after speciation.  相似文献   

6.
The spectacularly diverse cichlid fish species flocks of the East African Rift Lakes have elicited much debate on the potential evolutionary mechanisms responsible for the origin of these adaptive radiations. An historical perspective on population structure may offer insights into the processes driving population differentiation and possibly speciation. Here, we examine mitochondrial DNA (mtDNA) sequence variation in two endemic species of rock-dwelling cichlids, Simochromis babaulti and S. diagramma , from Lake Tanganyika. Phylogeographic analyses were used to infer what factors might have been important in the genetic structuring of Simochromis populations. Patterns of mtDNA differentiation in Simochromis were compared to those of other rock-dwelling cichlids to distinguish between competing hypotheses concerning the processes underlying their evolution. In striking contrast to previous findings, populations of Simochromis , even those separated by up to 300 km, were found to share mitochondrial DNA haplotypes. There is no correspondence between mtDNA genealogies and the geographical distribution of populations. Only S. babaulti , but not S. diagramma was found to have a significant association between genetic and geographical distance. These phylogeographic patterns suggest that the evolutionary effects of abiotic and biotic factors shaping population genetic structure may differ substantially even among closely related species of rock-dwelling cichlids. Physical events and barriers to gene flow that are believed to have had a major impact on the geographical distribution and intralacustrine speciation of Tropheus do not seem to have equally strongly affected its close relative Simochromis . These findings emphasize that no single mechanism can be responsible for the formation of population structure, speciation, and the adaptive radiation of all cichlid fishes.  相似文献   

7.
When a population size is reduced, genetic drift may fix slightly deleterious mutations, and an increase in nonsynonymous substitution is expected. It has been suggested that past aridity has seriously affected and decreased the populations of cichlid fishes in Lake Victoria, while geographical studies have shown that the water levels in Lake Tanganyika and Lake Malawi have remained fairly constant. The comparably stable environments in the latter two lakes might have kept the populations of cichlid fishes large enough to remove slightly deleterious mutations. The difference in the stability of cichlid fish population sizes between Lake Victoria and the Lakes Tanganyika and Malawi is expected to have caused differences in the nonsynonymous/synonymous ratio, ω (= dN/dS), of the evolutionary rate. Here, we estimated ω and compared it between the cichlids of the three lakes for 13 mitochondrial protein-coding genes using maximum likelihood methods. We found that the lineages of the cichlids in Lake Victoria had a significantly higher ω for several mitochondrial loci. Moreover, positive selection was indicated for several codons in the mtDNA of the Lake Victoria cichlid lineage. Our results indicate that both adaptive and slightly deleterious molecular evolution has taken place in the Lake Victoria cichlids' mtDNA genes, whose nonsynonymous sites are generally conserved.  相似文献   

8.
Lake Tanganyika, Africa's oldest lake, harbours an impressive diversity of cichlid fishes. Although diversification in its radiating groups is thought to have been initially rapid, cichlids from Lake Tanganyika show little evidence for ongoing speciation. In contrast, examples of recent divergence among sympatric colour morphs are well known in haplochromine cichlids from Lakes Malawi and Victoria. Here, we report genetic evidence for recent divergence between two sympatric Tanganyikan cichlid colour morphs. These Petrochromis morphs share mitochondrial haplotypes, yet microsatellite loci reveal that their sympatric populations form distinct genetic groups. Nuclear divergence between the two morphs is equivalent to that which arises geographically within one of the morphs over short distances and is substantially smaller than that among other sympatric species in this genus. These patterns suggest that these morphs diverged only recently, yet that barriers to gene flow exist which prevent extensive admixture despite their sympatric distribution. The morphs studied here provide an unusual example of active diversification in Lake Tanganyika's generally ancient cichlid fauna and enable comparisons of speciation processes between Lake Tanganyika and other African lakes.  相似文献   

9.
Feller  Anna F.  Ogi  Vera  Seehausen  Ole  Meier  Joana I. 《Hydrobiologia》2021,848(16):3727-3745

Sex determination systems are highly conserved among most vertebrates with genetic sex determination, but can be variable and evolve rapidly in some. Here, we study sex determination in a clade with exceptionally high sex chromosome turnover rates. We identify the sex determining chromosomes in three interspecific crosses of haplochromine cichlid fishes from Lakes Victoria and Malawi. We find evidence for different sex determiners in each cross. In the Malawi cross and one Victoria cross the same chromosome is sex-linked but while females are the heterogametic sex in the Malawi species, males are the heterogametic sex in the Victoria species. This chromosome has not previously been reported to be sex determining in cichlids, increasing the number of different chromosomes shown to be sex determining in cichlids to 12. All Lake Victoria species of our crosses are less than 15,000 years divergent, and we identified different sex determiners among them. Our study provides further evidence for the diversity and evolutionary flexibility of sex determination in cichlids, factors which might contribute to their rapid adaptive radiations.

  相似文献   

10.
Rapid speciation can occur on ecological time scales and interfere with ecological processes, resulting in species distribution patterns that are difficult to reconcile with ecological theory. The haplochromine cichlids in East African lakes are an extreme example of rapid speciation. We analyse the causes of their high speciation rates. Various studies have identified disruptive sexual selection acting on colour polymorphisms that might cause sympatric speciation. Using data on geographical distribution, colouration and relatedness from 41 species endemic to Lake Victoria, we test predictions from this hypothesis. Plotting numbers of pairs of closely related species against the amount of distributional overlap between the species reveals a bimodal distribution with modes on allopatric and sympatric. The proportion of sister species pairs that are heteromorphic for the traits under disruptive selection is higher in sympatry than in allopatry. These data support the hypothesis that disruptive sexual selection on colour polymorphisms has caused sympatric speciation and help to explain the rapid radiation of haplochromine species flocks.  相似文献   

11.
The adaptive radiations of East African cichlid fish in the Great Lakes Victoria, Malawi, and Tanganyika are well known for their diversity and repeatedly evolved phenotypes. Convergent evolution of melanic horizontal stripes has been linked to a single locus harboring the gene agouti-related peptide 2 (agrp2). However, where and when the causal variants underlying this trait evolved and how they drove phenotypic divergence remained unknown. To test the alternative hypotheses of standing genetic variation versus de novo mutations (independently originating in each radiation), we searched for shared signals of genomic divergence at the agrp2 locus. Although we discovered similar signatures of differentiation at the locus level, the haplotypes associated with stripe patterns are surprisingly different. In Lake Malawi, the highest associated alleles are located within and close to the 5′ untranslated region of agrp2 and likely evolved through recent de novo mutations. In the younger Lake Victoria radiation, stripes are associated with two intronic regions overlapping with a previously reported cis-regulatory interval. The origin of these segregating haplotypes predates the Lake Victoria radiation because they are also found in more basal riverine and Lake Kivu species. This suggests that both segregating haplotypes were present as standing genetic variation at the onset of the Lake Victoria adaptive radiation with its more than 500 species and drove phenotypic divergence within the species flock. Therefore, both new (Lake Malawi) and ancient (Lake Victoria) allelic variation at the same locus fueled rapid and convergent phenotypic evolution.  相似文献   

12.
The Lake Malawi haplochromine cichlid flock is one of the largest vertebrate adaptive radiations. The geographical source of the radiation has been assumed to be rivers to the south and east of Lake Malawi, where extant representatives of the flock are now present. Here, we provide mitochondrial DNA evidence suggesting the sister taxon to the Lake Malawi radiation is within the Great Ruaha river in Tanzania, north of Lake Malawi. Estimates of the time of divergence between the Lake Malawi flock and this riverine sister taxon range from 2.13 to 6.76 Ma, prior to origins of the current radiation 1.20–4.06 Ma. These results are congruent with evaluations of 2–3.75 Ma fossil material that suggest past faunal connections between Lake Malawi and the Ruaha. We propose that ancestors of the Malawi radiation became isolated within the catchment during Pliocene rifting that formed both Lake Malawi and the Kipengere/Livingstone mountain range, before colonizing rivers to the south and east of the lake region and radiating within the lake basin. Identification of this sister taxon allows tests of whether standing genetic diversity has predisposed Lake Malawi cichlids to rapid speciation and adaptive radiation.  相似文献   

13.
Synopsis Before the decline of the species flock of haplochromine cichlids of Lake Victoria due to the Nile perch upsurge, there were many co-existing haploehromine species such as the taxonomically and ecologically well-studied zooplanktivores of the Mwanza Gulf. In spite of the scarcely separated niches of some of these species, no sign of competition for space or food could be demonstrated. As is argued in this paper, optical differentiation could well be an aspect of adaptive radiation of these zooplanktivores, particularly among the highly sympatric species. Our hypothesis is based on the morphological modifications of retinal structures in nine zooplanktivorous species. Interspecific variation was observed in composition, size and density of the photoreceptors and ganglion cells. The analyses included the intraretinal variation and size dependency of some of the structural parameters. The optical functions deduced from retinal structure indicate distinct interspecific differences in sensitivity thresholds and a slight differentiation in visual resolution. These functions correlate poorly with the photic conditions of the species-specific habitats. The optical properties can, on the other hand, be connected with the more subtle differentiation in food items and feeding behaviour among these species. It is our concluding hypothesis, that the optical differentiation among the haplochromine zooplanktivores primarily served resource partitioning by different modes of visual prey detection rather than niche partitioning by habitat.  相似文献   

14.
Although olfaction could play a crucial role in underwater habitats by allowing fish to sense a variety of nonvolatile chemical signals, the importance of olfaction in species-rich cichlids is still controversial. In particular, examining whether cichlids rely on olfaction for reproduction is of primary interest to understand the mechanisms of speciation. In the present study, we explored the V1R (also known as ora) genes, which are believed to encode reproductive pheromone receptors in fish, in the genomes of Lake Victoria cichlids. By screening a bacterial artificial chromosome library, we identified all six intact V1R genes (V1R1 to V1R6) that have been reported in other teleost fish. Furthermore, RT-PCR and in situ hybridization analyses showed that all of the V1R genes were expressed in the olfactory epithelium, indicating that these receptors are functional in cichlids. These observations indicate that cichlids use V1R-mediated olfaction in some ways for their social behaviors.  相似文献   

15.
Geophysical data are currently being interpreted as evidence for a late Pleistocene desiccation of Lake Victoria and its refilling 14,600 years ago. This implies that between 500 and 1000 endemic cichlid fish species must have evolved in 14,600 years, the fastest large-scale species radiation known. A recent review concludes that biological evidence clearly rejects the postulated Pleistocene desiccation of the lake: a 14,600 year history would imply exceptionally high speciation rates across a range of unrelated fish taxa. To test this suggestion, I calculated speciation rates for all 41 phylogenetic lineages of fish in the lake. Except for one cichlid lineage, accepting a 14 600 year history does not require any speciation rates that fall outside the range observed in fishes in other young lakes around the world. The exceptional taxon is a lineage of haplochromine cichlids that is also known for its rapid speciation elsewhere. Moreover, since it is unknown how many founding species it has, it is not certain that its speciation rates are really outside the range observed in fishes in other young lakes. Fish speciation rates are generally faster in younger than in older lakes, and those in Lake Victoria, by far the largest of the young lakes of the world, are no exception. From the speciation rates and from biogeographical observations that Lake Victoria endemics, which lack close relatives within the lake basin, have such relatives in adjacent drainage systems that may have had Holocene connections to Lake Victoria, I conclude that the composition of the fish assemblage does not provide biological evidence against Pleistocene desiccation. It supports a hypothesis of recent colonization from outside the lake basin rather than survival of a diverse assemblage within the basin.  相似文献   

16.
Imanishi's "mental" (cerebral) view of speciation is presented, in Mizuhata's revision. The key concept here is the "ethological partition" of the species. Members of each species=society (etho-species) share the same mental (brain) software, irrespective of their genetic structure. Cerebral animals perform active programmed selection, not to be confused with passive, non-programmed "natural selection" as in Neo-Darwinism. The program includes mating-choice of peculiar characters, distinct from the Neo-Darwinian sexual selection supposed due to the specific choosy genes. Speciation can occur, as a "partition of species=society", with bifurcation of mate-choosing program in the parent species. A main promoter for this bifurcation is species-specific "passion" for especially significant characters: long necks, ornamental antlers, ocelli feathers, bright nuptial colors etc. The cichlids in Lake Victoria achieved explosive speciation, while retaining their genetic homogeneity completely. Therefore it is illogical to attribute this divergence to extraordinary mutations in "action controlling genes". The origin of species=society (etho-species) can trace along to the Cambrian Period.  相似文献   

17.
Over 200 described endemic species make up the adaptive radiation of cichlids in Lake Tanga-nyika. This species assemblage has been viewed as both an evolutionary reservoir of old cichlid lineages and an evolutionary hotspot from which the modern cichlid lineages arose, seeding the adaptive radiations in Lakes Victoria and Malawi. Here we report on a phylogenetic analysis of Lake Tanganyika cichlids combining the previously determined sequences of the mitochondrial ND2 gene (1047 bp) with newly derived sequences of the nuclear RAG1 gene (∼700 bp of intron 2 and ∼1100 bp of exon 3). The nuclear data—in agreement with mitochondrial DNA—suggest that Lake Tanganyika harbors several ancient lineages that did not undergo rampant speciation (e.g., Bathybatini, Trematocarini). We find strong support for the monophyly of the most species-rich Tanganyikan group, the Lamprologini, and we propose a new taxonomic group that we term the C-lineage. The Haplochromini and Tropheini both have an 11-bp deletion in the intron of RAG1, strongly supporting the monophyly of this clade and its derived position. Mapping the phylogenetically informative positions revealed that, for certain branches, there are six times fewer apomorphies in RAG1. However, the consistency index of these positions is higher compared to the mitochondrial ND2 gene. Nuclear data therefore provide, on a per–base pair basis, less but more reliable phylogenetic information. Even if in our case RAG1 has not provided as much phylogenetic information as we expected, we suggest that this marker might be useful in the resolution of the phylogeny of older groups. Reviewing Editor: Dr. Rafael Zardoya  相似文献   

18.
Disruptive natural selection on traits related to resource exploitation may lead to differential adaptation and finally to speciation. Trait utility, the performance of traits in terms of fitness, is a central criterion for the recognition of adaptive radiation. Utility of morphological structures involved in foraging can be detected by relating their variation to individual resource use. Here, we test for trophic adaptations in the radiation of “sharpfin” sailfin silversides (Atheriniformes: Telmatherinidae), endemic to ancient graben-lake Matano in central Sulawesi (Indonesia). This small species-flock is characterized by high phenotypic diversity, including traits most likely related to feeding ecology. Previous analyses suggest that species boundaries are porous, indicating very recent or possibly ongoing processes of species flock formation. To test for adaptation to resource use in this radiation, we compared morphological traits among trophic groups of individuals as identified by stomach content analyses. We analyzed variation in candidate structures or structural complexes commonly recognized as indicative of trophic adaptation in fish radiations, including shapes of body, oral and pharyngeal jaws, gill rakers and body size. We found fine-scaled morphological differentiation according to feeding habits, covering all traits analyzed. Fish-, shrimp- and egg-feeders were most distinct, with major axes of morphological variation fitting patterns of adaptation reported from other lacustrine fish radiations. Thus, the present results are consistent with fine-scaled morphological adaptation to resource use, supporting the adaptive character of the sharpfin sailfin silverside radiation.  相似文献   

19.
Cichlid fishes of the tribe Tropheini are a striking case of adaptive radiation, exemplifying multiple trophic transitions between herbivory and carnivory occurring in sympatry with other established cichlid lineages. Tropheini evolved highly specialized eco‐morphologies to exploit similar trophic niches in different ways repeatedly and rapidly. To better understand the evolutionary history and trophic adaptations of this lineage, we generated a dataset of 532 targeted loci from 21 out of the 22 described Tropheini species. We resolved the Tropheini into seven monophyletic genera and discovered one to be polyphyletic. The polyphyletic genus, Petrochromis, represents three convergent origins of the algae grazing trophic specialization. This repeated evolution of grazing may have been facilitated by adaptive introgression as we found evidence for gene flow among algae grazing genera. We also found evidence of gene flow among algae browsing genera, but gene flow was restricted between herbivorous and carnivorous genera. Furthermore, we observed no evidence supporting a hybrid origin of this radiation. Our molecular evolutionary analyses suggest that opsin genes likely evolved in response to selection pressures associated with trophic ecology in the Tropheini. We found surprisingly little evidence of positive selection in coding regions of jaw‐shaping genes in this trophically diverse lineage. This suggests low degrees of freedom for further change in these genes, and possibly a larger role for regulatory variation in driving jaw adaptations. Our study emphasizes Tropheini cichlids as an important model for studying the evolution of trophic specialization and its role in speciation.  相似文献   

20.
C B Wadsworth  X Li  E B Dopman 《Heredity》2015,114(6):593-600
Despite unparalleled access to species'' genomes in our post-genomic age, we often lack adequate biological explanations for a major hallmark of the speciation process—genetic divergence. In the presence of gene flow, chromosomal rearrangements such as inversions are thought to promote divergence and facilitate speciation by suppressing recombination. Using a combination of genetic crosses, phenotyping of a trait underlying ecological isolation, and population genetic analysis of wild populations, we set out to determine whether evidence supports a role for recombination suppressors during speciation between the Z and E strains of European corn borer moth (Ostrinia nubilalis). Our results are consistent with the presence of an inversion that has contributed to accumulation of ecologically adaptive alleles and genetic differentiation across roughly 20% of the Ostrinia sex chromosome (~4 Mb). Patterns in Ostrinia suggest that chromosomal divergence may involve two separate phases—one driving its transient origin through local adaptation and one determining its stable persistence through differential introgression. As the evolutionary rate of rearrangements in lepidopteran genomes appears to be one of the fastest among eukaryotes, structural mutations may have had a disproportionate role during adaptive divergence and speciation in Ostrinia and in other moths and butterflies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号