首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease, characterized by increased ovarian androgen biosynthesis, chronic anovulation and polycystic ovaries. The objective of this study was to identify the altered miRNA expression profiles in follicular fluid derived exosomes isolated from PCOS patients and to investigate the molecular functions of exosomal miR-424-5p. Herein, small RNA sequencing showed that twenty-five miRNAs were differentially expressed between control and PCOS group. The alterations in the miRNA profile were related to the endocrine resistance, cell growth and proliferation, cellular senescence and insulin signaling pathway. Among these differentially expressed miRNAs, we found that the expression of miR-424-5p was significantly decreased in PCOS exosomes and primary granulosa cells (GCs). Exosome-enriched miR-424-5p significantly promoted GCs senescence and suppressed cell proliferation. Similar to the results obtained in the cells transfected with miR-424-5p mimic, miR-424-5p mimic significantly decreased cell proliferation ability and induced senescence, but treatment with miR-424-5p inhibitor got the opposite results. In addition, cell division cycle associated 4 (CDCA4) gene displayed an inverse expression pattern to those of miR-424-5p, was identified as the direct target of miR-424-5p. Overexpression of CDCA4 reversed the effects of exosomal miR-424-5p on GCs via activation of Rb/E2F1 signaling pathway. These results demonstrate that exosomal miR-424-5p inhibits GCs proliferation and induces cellular senescence in PCOS through blocking CDCA4-mediated Rb/E2F1 signaling. Our findings provide new information on abnormal follicular development in PCOS.  相似文献   

2.
Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.  相似文献   

3.
The aim of the current study was to compare the expression of microRNAs (miRNAs) in exosomes derived from human bone mesenchymal stem cells (hBMSCs) with and without chondrogenic induction. Exosomes derived from hBMSCs were isolated and identified. Microarray analysis was performed to compare miRNA expression between exosomes derived from hBMSCs with and without chondrogenic induction, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the differentially expressed miRNAs. hBMSCs were transfected with miRNA mimic to extract miRNA-overexpressed exosomes. The results showed that most exosomes exhibited a cup-shaped or round-shaped morphology with a diameter of approximately 50-200 nm and expressed CD9 and CD63. We detected 141 miRNAs that were differentially expressed with and without chondrogenic induction by over a twofold change, including 35 upregulated miRNAs, such as miR-1246, miR-1290, miR-193a-5p, miR-320c, and miR-92a, and 106 downregulated miRNAs, such as miR-377-3p and miR-6891-5p. qRT-PCR analysis validated these results. Exosomes derived from hBMSCs overexpressing miR-320c were more efficient than normal exosomes derived from control hBMSCs at promoting osteoarthritis chondrocyte proliferation, down-regulated matrix metallopeptidase 13 and up-regulated (sex determining region Y)-box 9 expression during hBMSC chondrogenic differentiation. In conclusion, we identified a group of upregulated miRNAs in exosomes derived from hBMSCs with chondrogenic induction that may play an important role in mesenchymal stem cell-derived exosomes in cartilage regeneration and, ultimately, the treatment of arthritis. We demonstrated the potential of these modified exosomes in the development of novel therapeutic strategies.  相似文献   

4.
Exosomes have recently emerged as key mediators of different physiological and pathological processes. However, there has been few report about proteomic analysis of exosomes derived from human follicular fluid and their association with the occurrence of PCOS. Herein, we used TMT‐tagged quantitative proteomic approach to identify proteomic profiles in exosomes derived from follicular fluid of PCOS patients and healthy controls. We identified 662 proteins in exosomes derived from human ovarian follicular fluid. Eighty‐six differently expressed proteins (P < .05) were found between PCOS and healthy women. The alterations in the proteomic profile were related to the inflammation process, reactive oxygen species metabolic process, cell migration and proliferation. Importantly, we observed that follicular fluid exosomes contain S100 calcium‐binding protein A9 (S100‐A9) protein. Exosome‐enriched S100‐A9 significantly enhanced inflammation and disrupted steroidogenesis via activation of nuclear factor kappa B (NF‐κB) signalling pathway. These data demonstrate that exosomal proteins are differentially expressed in follicular fluid during disease process, and some proteins may play important roles in the regulation of granulosa cell function. These results highlight the importance of exosomes as extracellular communicators in ovarian follicular development.  相似文献   

5.
Proper cell communication within the ovarian follicle is critical for the growth and maturation of a healthy oocyte that can be fertilized and develop into an embryo. Cell communication within the follicle involves many signaling molecules and is affected by maternal age. Recent studies indicate that cell communication can be mediated through secretion and uptake of small membrane-enclosed vesicles. The goals of this study were to 1) identify cell-secreted vesicles (microvesicles and exosomes) containing miRNAs and proteins within ovarian follicular fluid and 2) determine if miRNA level differs in exosomes isolated from follicular fluid in young compared to old mares. We demonstrate the presence of vesicles resembling microvesicles and exosomes in ovarian follicular fluid using transmission electron microscopy and CD63-positive and RNA containing vesicles using flow cytometry. Moreover, proteomics analysis reveals that follicular fluid-isolated exosomes contain both known exosomal proteins and proteins not previously reported in isolated exosomes. MicroRNAs were detected in microvesicle and exosomes preparations isolated from follicular fluid by real-time PCR analysis. Uptake of fluorescent-labeled microvesicles by granulosa cells was examined using in vitro and in vivo approaches. MicroRNA expression profiling reveals that miRNAs in microvesicle and exosome preparations isolated from follicular fluid also are present within surrounding granulosa and cumulus cells. These studies revealed that cell communication within the mammalian ovarian follicle may involve transfer of bioactive material by microvesicles and exosomes. Finally, miRNAs present in exosomes from ovarian follicular fluid varied with the age of the mare, and a number of different miRNAs were detected in young vs. old mare follicular fluid.  相似文献   

6.
Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 104–106 copies/ml TAR RNA in exosomes derived from infected culture supernatants and 103 copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.  相似文献   

7.
Ovarian hyperstimulation syndrome (OHSS) is one of the most dangerous iatrogenic complications in controlled ovarian hyperstimulation (COH). The exact molecular mechanism that induces OHSS remains unclear. In recent years, accumulating evidence found that exosomal miRNAs participate in many diseases of reproductive system. However, the specific role of miRNAs, particularly the follicular fluid-derived exosomal miRNAs in OHSS remains controversial. To identify differentially expressed follicular fluid exosomal miRNAs from OHSS and non-OHSS patients, the analysis based on miRNA-sequence was conducted. The levels of 291 miRNAs were significantly differed in exosomes from OHSS patients compared with normal control, and exosomal miR-27 was one of the most significantly down-regulated miRNAs in the OHSS group. By using MiR-27 mimic, we found it could increase ROS stress and apoptosis by down-regulating the expression of p-ERK/Nrf2 pathway by negatively regulating SPRY2. These data demonstrate that exosomal miRNAs are differentially expressed in follicular fluid between patients with and without OHSS, and follicular fluid exosomal miR-27 may involve in the pathological process of OHSS development.  相似文献   

8.
MicroRNAs (miRNAs) are stable, small non-coding RNAs that modulate many downstream target genes. Recently, circulating miRNAs have been detected in various body fluids and within exosomes, prompting their evaluation as candidate biomarkers of diseases, especially cancer. Kaposi''s sarcoma (KS) is the most common AIDS-associated cancer and remains prevalent despite Highly Active Anti-Retroviral Therapy (HAART). KS is caused by KS-associated herpesvirus (KSHV), a gamma herpesvirus also associated with Primary Effusion Lymphoma (PEL). We sought to determine the host and viral circulating miRNAs in plasma, pleural fluid or serum from patients with the KSHV-associated malignancies KS and PEL and from two mouse models of KS. Both KSHV-encoded miRNAs and host miRNAs, including members of the miR-17–92 cluster, were detectable within patient exosomes and circulating miRNA profiles from KSHV mouse models. Further characterization revealed a subset of miRNAs that seemed to be preferentially incorporated into exosomes. Gene ontology analysis of signature exosomal miRNA targets revealed several signaling pathways that are known to be important in KSHV pathogenesis. Functional analysis of endothelial cells exposed to patient-derived exosomes demonstrated enhanced cell migration and IL-6 secretion. This suggests that exosomes derived from KSHV-associated malignancies are functional and contain a distinct subset of miRNAs. These could represent candidate biomarkers of disease and may contribute to the paracrine phenotypes that are a characteristic of KS.  相似文献   

9.
《Genomics》2021,113(3):1514-1521
To explore the role of plasma miRNAs in exosomes in early postmenopausal women. Small RNA sequencing was implemented to clarify the expression of miRNA in plasma exosomes obtained from 15 postmenopausal women, divided into groups of osteoporosis, osteopenia, and normal bone mass based on bone mineral density. Differentially expressed miRNAs (DEMs) were identified by comparing miRNA expression profiles. Five putative miRNAs, miR-224-3p, miR-25-5p, miR-302a-3p, miR-642a-3p, and miR-766-5p were confirmed by real-time PCR; miRNA target genes were obtained from 4 databases: miRWalk, miRDB, RNA22, and TargetScan. The miRNA-mRNA- Kyoto Encyclopedia of Genes and Genomes (KEGG) networks were analyzed, and the DEMs' potential role was investigated by gene ontology terms and KEGG pathway annotation. The results suggest that characterizing plasma exosomal miRNA profiles of early postmenopausal women by small RNA sequencing could identify novel exo-miRNAs involved in bone remodeling, and miR-642a-3p maybe contribute to the prediction and diagnosis of early postmenopausal osteoporosis.  相似文献   

10.
Proliferating hepatic stellate cells (HSCs) respond to liver damage by secreting collagens that form fibrous scar tissue, which can lead to cirrhosis if in appropriately regulated. Advancement of microRNA (miRNA) hepatic therapies has been hampered by difficulties in delivering miRNA to damaged tissue. However, exosomes secreted by adipose‐derived mesenchymal stem cells (ADSCs) can be exploited to deliver miRNAs to HSCs. ADSCs were engineered to overexpress miRNA‐181‐5p (miR‐181‐5p‐ADSCs) to selectively home exosomes to mouse hepatic stellate (HST‐T6) cells or a CCl4‐induced liver fibrosis murine model and compared with non‐targeting control Caenorhabditis elegans miR‐67 (cel‐miR‐67)‐ADSCs. In vitro analysis confirmed that the transfer of miR‐181‐5p from miR‐181‐5p‐ADSCs occurred via secreted exosomal uptake. Exosomes were visualized in HST‐T6 cells using cyc3‐labelled pre‐miRNA‐transfected ADSCs with/without the exosomal inhibitor, GW4869. The effects of miRNA‐181‐5p overexpression on the fibrosis associated STAT3/Bcl‐2/Beclin 1 pathway and components of the extracellular matrix were assessed. Exosomes from miR181‐5p‐ADSCs down‐regulated Stat3 and Bcl‐2 and activated autophagy in the HST‐T6 cells. Furthermore, the up‐regulated expression of fibrotic genes in HST‐T6 cells induced by TGF‐β1 was repressed following the addition of isolated miR181‐5p‐ADSC exosomes compared with miR‐67‐ADSCexosomes. Exosome therapy attenuated liver injury and significantly down‐regulated collagen I, vimentin, α‐SMA and fibronectin in liver, compared with controls. Taken together, the effective anti‐fibrotic function of engineered ADSCs is able to selectively transfer miR‐181‐5p to damaged liver cells and will pave the way for the use of exosome‐ADSCs for therapeutic delivery of miRNA targeting liver disease.  相似文献   

11.
急性髓系白血病(acute myeloid leukemia,AML)是一类造血干细胞的恶性克隆性疾病,目前的诊断方法不利于疾病的早期发现,且诊断结果重复性较差。已有大量研究显示,细胞外microRNA(miRNA或miR)富集在外泌体(exosome)中,且受其表面膜的保护而具有很好的稳定性,是理想的分子标志物。目前,多种实体肿瘤均已检测到肿瘤特异性外泌体miRNA(exosomal miRNA)。然而,在AML患者中未见此外泌体miRNA报道。本研究探讨急性髓系白血病血浆外泌体miRNA表达谱差异及新miRNA序列。采用solexa高通量测序技术对7例AML患者(AML组)及7例健康对照者(对照组)血浆外泌体miRNAs进行测序,利用Mireap预测软件进行新miRNAs分析,通过edger差异分析软件筛选组间差异miRNA,获得211个已知的差异表达miRNAs以及2个新miRNAs,选择4个差异表达的miRNAs:miR-155-5p、miR-335-5p、miR-451a及xxx-m0038 5p(新miRNA),在两组(各23例)的血浆外泌体样本中,进行实时荧光定量PCR(qRT-PCR)验证,验证结果与测序结果一致。对差异表达的外泌体miRNA进行靶基因预测及其GO(Gene Ontology)和信号通路富集分析,发现靶基因聚集的生物学功能多数参与生物进展过程的调控。靶基因主要富集在FoxO、MAPK、Hippo信号通路以及HTLV-I感染等。结果显示,AML患者与健康对照者的血浆外泌体miRNA存在着差异性表达。差异性表达的miRNA特异性很高,对进一步阐明AML白血病发生与发展的分子机制、研发新的无创诊断方法、新的诊断标记物和有效治疗AML的方法具有十分重要和深远的意义。  相似文献   

12.
Exosomes are extracellular membrane vesicles of 50- to 130-nm diameter secreted by most tumor cells. Exosomes can mediate the intercellular transfer of proteins and RNAs, including microRNAs (miRNAs), and promote both tumorigenesis and premetastatic niche formation. In this study, we performed exosomal RNA sequencing to identify candidate exosomal miRNAs that could be associated with colorectal cancer (CRC) and its distant metastasis. The expression profiles of exosomal miRNA, as secreted by isogenic human primary CRC cell line SW480 and highly metastatic cell line SW620, were analyzed and the potential targets related to tumorigenesis and metastatic progression were investigated. We found that 25 miRNAs had been up-regulated and 5 miRNAs had been down-regulated in exosomes purified from SW620 culture supernatant. Candidate miRNAs were further evaluated for CRC diagnosis using quantitative real-time polymerase chain reaction in CRC patients. Higher expression levels of circulating exosomal miR-17-5p and miR-92a-3p were significantly associated with pathologic stages and grades of the CRC patients. CONCLUSIONS: Circulating exosomal miR-17-5p and miR-92a-3p may provide a promising noninvasive prognostic biomarker for primary and metastatic CRC.  相似文献   

13.

Background

Exosomes play a major role in cell-to-cell communication, targeting cells to transfer exosomal molecules including proteins, mRNAs, and microRNAs (miRNAs) by an endocytosis-like pathway. miRNAs are small noncoding RNA molecules on average 22 nucleotides in length that regulate numerous biological processes including cancer pathogenesis and mediate gene down-regulation by targeting mRNAs to induce RNA degradation and/or interfering with translation. Recent reports imply that miRNAs can be stably detected in circulating plasma and serum since miRNAs are packaged by exosomes to be protected from RNA degradation. Thus, profiling exosomal miRNAs are in need to clarify intercellular signaling and discover a novel disease marker as well.

Methodology/Principal Findings

Exosomes were isolated from cultured cancer cell lines and their quality was validated by analyses of transmission electron microscopy and western blotting. One of the cell lines tested, a metastatic gastric cancer cell line, AZ-P7a, showed the highest RNA yield in the released exosomes and distinctive shape in morphology. In addition, RNAs were isolated from cells and culture media, and profiles of these three miRNA fractions were obtained using microarray analysis. By comparing signal intensities of microarray data and the following validation using RT-PCR analysis, we found that let-7 miRNA family was abundant in both the intracellular and extracellular fractions from AZ-P7a cells, while low metastatic AZ-521, the parental cell line of AZ-P7a, as well as other cancer cell lines showed no such propensity.

Conclusions/Significance

The enrichment of let-7 miRNA family in the extracellular fractions, particularly, in the exosomes from AZ-P7a cells may reflect their oncogenic characteristics including tumorigenesis and metastasis. Since let-7 miRNAs generally play a tumor-suppressive role as targeting oncogenes such as RAS and HMGA2, our results suggest that AZ-P7a cells release let-7 miRNAs via exosomes into the extracellular environment to maintain their oncogenesis.  相似文献   

14.
Prion diseases are transmissible neurodegenerative disorders affecting both humans and animals. The cellular prion protein, PrPC, and the abnormal infectious form, PrPSc, are found associated with exosomes, which are small 50–130 nm vesicles released from cells. Exosomes also contain microRNAs (miRNAs), a class of non-coding RNA, and have been utilized to identify miRNA signatures for diagnosis of disease. While some miRNAs are deregulated in prion-infected brain tissue, the role of miRNA in circulating exosomes released during prion disease is unknown. Here, we investigated the miRNA profile in exosomes released from prion-infected neuronal cells. We performed the first small RNA deep sequencing study of exosomes and demonstrated that neuronal exosomes contain a diverse range of RNA species including retroviral RNA repeat regions, messenger RNA fragments, transfer RNA fragments, non-coding RNA, small nuclear RNA, small nucleolar RNA, small cytoplasmic RNA, silencing RNA as well as known and novel candidate miRNA. Significantly, we show that exosomes released by prion-infected neuronal cells have increased let-7b, let-7i, miR-128a, miR-21, miR-222, miR-29b, miR-342-3p and miR-424 levels with decreased miR-146 a levels compared to non-infected exosomes. Overall, these results demonstrate that circulating exosomes released during prion infection have a distinct miRNA signature that can be utilized for diagnosis and understanding pathogenic mechanisms in prion disease.  相似文献   

15.
Background: Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates. Currently, there is no effective treatment to complement mechanical ventilation. Exosomes and microRNAs (miRNAs) are promising agents for the management of this disease.Methods: Exosomes were isolated from mouse bone marrow stromal stem cells (BMSCs). The levels of two miRNAs, miR-542-3P and miR-150, in exosomes were determined using RT-PCR, and miR-150 was selected for further study. ALI model was established in mice using lipopolysaccharides, and then, they were treated with saline, exosomes, miRNA agomirs, or miRNA antagomirs. The concentrations of TNF-α, IL-6, and IL-1β and the number of neutrophils and macrophages in the bronchoalveolar lavage fluid were measured. The wet/dry weight ratio of the lung tissue was calculated, and tissue pathology and apoptosis were observed using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. CD34 and VE-cadherin expression was detected using immunofluorescence. Proteins associated with apoptosis and MAPK signaling were detected using Western blotting, and miR-150 expression in lung tissue was evaluated using RT-PCR.Results: We successfully isolated BMSCs and exosomes and showed that the level of miR-150 was significantly higher than that of miR-542-3p. Exosomes and miR-150 reduced inflammation and lung edema while maintaining the integrity of the alveolar structure. They also mitigated microvascular endothelial cell injury by regulating the caspase-3, Bax/Bcl-2, and MAPK signaling.Conclusions: Exosomal miR-150 attenuates lipopolysaccharide-induced ALI through the MAPK pathway.  相似文献   

16.
Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, which contain several donor cell-associated proteins as well as mRNA, miRNA, and lipids and coordinate multiple physiological and pathological functions through horizontal communication between cells. Almost all types of liver cells, such as hepatocytes and Kupffer cells, are exosome-releasing and/or exosome-targeted cells. Exosomes secreted by liver cells play an important role in regulating general physiological functions and also participate in the onset and development of liver diseases, including liver cancer, liver injury, liver fibrosis and viral hepatitis. Liver cell-derived exosomes carry liver cell-specific proteins and miRNAs, which can be used as diagnostic biomarkers and treatment targets of liver disease. This review discusses the functions of exosomes derived from different liver cells and provides novel insights based on the latest developments regarding the roles of exosomes in the diagnosis and treatment of liver diseases.  相似文献   

17.
Hypoxia plays an important role during the evolution of cancer cells and their microenvironment. Emerging evidence suggests communication between cancer cells and their microenvironment occurs via exosomes. This study aimed to clarify whether hypoxia affects angiogenic function through exosomes secreted from leukemia cells. We used the human leukemia cell line K562 for exosome-generating cells and human umbilical vein endothelial cells (HUVECs) for exosome target cells. Exosomes derived from K562 cells cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h were isolated and quantitated by nanoparticle tracking analysis. These exosomes were then cocultured with HUVECs to evaluate angiogenic activity. The exosomes secreted from K562 cells in hypoxic conditions significantly enhanced tube formation by HUVECs compared with exosomes produced in normoxic conditions. Using a TaqMan low-density miRNA array, we found a subset of miRNAs, including miR-210, were significantly increased in exosomes secreted from hypoxic K562 cells. We demonstrated that cancer cells and their exosomes have altered miRNA profiles under hypoxic conditions. Although exosomes contain various molecular constituents such as proteins and mRNAs, altered exosomal compartments under hypoxic conditions, including miR-210, affected the behavior of endothelial cells. Our results suggest that exosomal miRNA derived from cancer cells under hypoxic conditions may partly affect angiogenic activity in endothelial cells.  相似文献   

18.
Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently,m RNAs and micro RNAs(mi RNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal mi RNAs, since the mi RNA profiles of exosomes may differ from those of the parent cells. Exosomal mi RNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal mi RNAs, and briefly describe how exosomes and their mi RNAs function in recipient cells.Finally, we will discuss the potential applications of these mi RNA-containing vesicles in clinical settings.  相似文献   

19.
Exosomes are nanoparticles (∼100 nm diameter) released from cells, which can transfer small RNAs and mRNA via the extracellular environment to cells at distant sites. We hypothesised that exosomes or the slightly larger microvesicles (100–300 nm) are released from the endometrial epithelium into the uterine cavity, and that these contain specific micro (mi)RNA that could be transferred to either the trophectodermal cells of the blastocyst or to endometrial epithelial cells, to promote implantation. The aim of this study was to specifically identify and characterise exosomes/microvesicles (mv) released from endometrial epithelial cells and to determine whether exosomes/mv are present in uterine fluid. Immunostaining demonstrated that the tetraspanins, CD9 and CD63 used as cell surface markers of exosomes are present on the apical surfaces of endometrial epithelial cells in tissue sections taken across the menstrual cycle: CD63 showed cyclical regulation. Exosome/mv pellets were prepared from culture medium of endometrial epithelial cell (ECC1 cells) and from uterine fluid and its associated mucus by sequential ultracentifugation. Exosomes/mv were positively identified in all preparations by FACS and immunofluorescence staining following exosome binding to beads. Size particle analysis confirmed the predominance of particles of 50–150 nm in each of these fluids. MiRNA analysis of the ECC1 cells and their exosomes/mv demonstrated sorting of miRNA into exosomes/mv: 13 of the 227 miRNA were specific to exosomes/mv, while a further 5 were not present in these. The most abundant miRNA in exosomes/mv were hsa-miR-200c, hsa-miR-17 and hsa-miR-106a. Bioinformatic analysis showed that the exosome/mv-specific miRNAs have potential targets in biological pathways highly relevant for embryo implantation. Thus exosomes/mv containing specific miRNA are present in the microenvironment in which embryo implantation occurs and may contribute to the endometrial-embryo cross talk essential for this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号