首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary A BamHI restriction endonuclease fragment, B7, which is replicated first among all other fragments derived from the Bacillus subtilis chromosome, was cloned in Escherichia coli using as vector a hybrid plasmid pMS102 that can replicate both in E. coli and B. subtilis. Digestion of pMS102 with BamHI produced two fragments and the smaller one was replaced by the B7 fragment.The cloned plasmid pMS102-B7 exhibited some peculiar properties that were not observed with plasmids containing other fragments from the B. subtilis chromosome. (1) E. coli cells harboring this plasmid stuck to each other and to glass. This property was more apparent when cells were grown in poor media. (2) E. coli cells tended to lose the plasmid spontaneously when they were grown without the selective pressure favorable to the plasmid. (3) The frequency of transformation of B. subtilis by pMS102-B7 was less than 1/1,000 of that by the vector plasmid pMS102. The number of copies of pMS102-B7 present in the transformants was also markedly reduced, although the pUB110 origin of replication on the vector was intact and should be functional in B. subtilis. This inhibitory effect of the B7 fragment on plasmid replication was confirmed more directly by developing a semi in vitro replication system using protoplasts.Both in E. coli and B. subtilis the B7 fragment affected replication of its own molecule but not that of the coexisting plasmid with an identical replication system. The implication of the function of the B7 fragment in the initiation of the B. subtilis chromosome will be discussed.  相似文献   

2.
To develop an economical industrial medium, untreated cane molasses (UCM) was tested as a carbon source for fermentation culturing of Escherichia coli. To test the industrial application of this medium, we chose a strain co-expressing a carbonyl reductase (PsCR) and a glucose dehydrogenase (BmGDH). Although corn steep liquor (CSL) could be used as an inexpensive nitrogen source to replace peptone, yeast extract could not be replaced in E. coli media. In a volume of 40 ml per 1-l flask, a cell concentration of optical density (OD600) 15.1 and enzyme activities of 6.51 U/ml PsCR and 3.32 U/ml BmGDH were obtained in an optimized medium containing 25.66 g/l yeast extract, 3.88 g/l UCM, and 7.1% (v/v) CSL. When 3.88 g/l UCM was added to the medium at 6 h in a fed-batch process, the E. coli concentration increased to OD600 of 24, and expression of both PsCR and BmGDH were twofold higher than that of a batch process. Recombinant cells from batch or fed-batch cultures were assayed for recombinant enzyme activity by testing the reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate (CHBE). Compared to cells from batch cultures, fed-batch cultured cells showed higher recombinant enzyme expression, producing 560 mM CHBE in the organic phase with a molar yield of 92% and an optical purity of the (S)-isomer of >99% enantiomeric excess.  相似文献   

3.
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce a large amount of succinic acid in a medium containing glucose, peptone, and yeast extract. In order to reduce the cost of the medium, whey and corn steep liquor (CSL) were used as substrates for the production of succinic acid by M. succiniciproducens MBEL55E. Anaerobic batch cultures of M. succiniciproducens MBEL55E in a whey-based medium containing CSL resulted in the production of succinic acid with a yield of 71% and productivity of 1.18 g/l/h, which are similar to those obtained in a whey-based medium containing yeast extract (72% and 1.21 g/l/h). Anaerobic continuous culture of M. succiniciproducens MBEL55E in a whey-based medium containing CSL resulted in a succinic acid yield of 69% and a succinic acid productivity as high as 3.90 g/l/h. These results show that succinic acid can be produced efficiently and economically by M. succiniciproducens MBEL55E from whey and CSL.  相似文献   

4.
The biosynthesis of iron–sulfur (Fe–S) clusters in Bacillus subtilis is mediated by the SUF‐like system composed of the sufCDSUB gene products. This system is unique in that it is a chimeric machinery comprising homologues of E. coli SUF components (SufS, SufB, SufC and SufD) and an ISC component (IscU). B. subtilis SufS cysteine desulfurase transfers persulfide sulfur to SufU (the IscU homologue); however, it has remained controversial whether SufU serves as a scaffold for Fe–S cluster assembly, like IscU, or acts as a sulfur shuttle protein, like E. coli SufE. Here we report that reengineering of the isoprenoid biosynthetic pathway in B. subtilis can offset the indispensability of the sufCDSUB operon, allowing the resultant Δsuf mutants to grow without detectable Fe–S proteins. Heterologous bidirectional complementation studies using B. subtilis and E. coli mutants showed that B. subtilis SufSU is interchangeable with E. coli SufSE but not with IscSU. In addition, functional similarity in SufB, SufC and SufD was observed between B. subtilis and E. coli. Our findings thus indicate that B. subtilis SufU is the protein that transfers sulfur from SufS to SufB, and that the SufBCD complex is the site of Fe–S cluster assembly.  相似文献   

5.
Alternative microbial hosts have been engineered as biocatalysts for butanol biosynthesis. The butanol synthetic pathway of Clostridium acetobutylicum was first re-constructed in Escherichia coli to establish a baseline for comparison to other hosts. Whereas polycistronic expression of the pathway genes resulted in the production of 34 mg/L butanol, individual expression of pathway genes elevated titers to 200 mg/L. Improved titers were achieved by co-expression of Saccharomyces cerevisiae formate dehydrogenase while overexpression of E. coli glyceraldehyde 3-phosphate dehydrogenase to elevate glycolytic flux improved titers to 580 mg/L. Pseudomonas putida and Bacillus subtilis were also explored as alternative production hosts. Polycistronic expression of butanol biosynthetic genes yielded butanol titers of 120 and 24 mg/L from P. putida and B. subtilis, respectively. Production in the obligate aerobe P. putida was dependent upon expression of bcd-etfAB. These results demonstrate the potential of engineering butanol biosynthesis in a variety of heterologous microorganisms, including those cultivated aerobically.  相似文献   

6.
Summary The cyclomaltodextrin glucanotransferase (CGTase, E.C. 2.4.1.19) gene from an alkalophilic Bacillus circulans var. alkalophilus ATCC21783 was cloned into Escherichia coli and B. subtilis. When cloned from E. coli to B. subtilis, the entire insert containing the CGTase gene was, depending on the plasmid construction, either unstable or the recombinant B. subtilis did not secrete the enzyme in significant amounts. To achieve efficient enzyme production in B. subtilis, the gene was placed under the control of the B. amyloliquefaciens -amylase promoter. In one of the constructions, both the promoter and the signal sequence of the gene were replaced with those of B. amyloliquefaciens, whereas in another construction only the promoter area was exchanged. The recombinant B. subtilis clones transformed with these plasmid constructions secreted CGTase into the culture medium 14 times as much as did the parental strain in shake flask cultures. In fermentor cultures in an industrially feasible medium the enzyme production was substantially higher, yielding 1.2 g/l of CGTase, which is about 33 times the amount of the enzyme produced by the parental strain in corresponding fermentations. Both of the plasmid constructions were stable when grown over 50 generations without antibiotic selection.  相似文献   

7.
Summary To investigate the effect of an active, plasmid-carried recA gene on the stability and/or the expression of plasmid genes in different genetic backgrounds, we have constructed a bifunctional plasmid (able to replicate in Escherichia coli and in Bacillus subtilis). Chimeric plasmids were obtained by inserting pC194 (Ehrlich 1977) into pDR1453 (Sancar and Rupp 1979). pDR1453 is a 12.9 Kbp plasmid constructed by inserting an E. coli chromosome fragment carrying the recA gene into pBR322. The expected bifunctional recombinant (pMR22/1) (15.7 Kbp) was easily obtained but surprisingly the Cm resistance was expressed only at a very low level in E. coli (as compared, for example, to pHV14, pHV15). We attribute this effect to the presence of multiple recA genes in the cell. On the contrary, Cmr E. coli transformants bear a recombinant plasmid (pMR22/n) containing tandemly repeated copies of pC194 in equilibrium with excised free pC194. Such amplification has never been observed in a Rec- background and is therefore mediated by the recA genes. Growth of these clones in the absence of Cm causes the loss of the extra copies, yielding a plasmid with a single copy of pC194, indistingishable from pMR22/1. Interestingly, we have observed that deletions occur at high frequency in pC194, which drastically increase Cmr in E. coli containing plasmids with a single copy of pC194. Two types of such deletions were detected: (a) large 1050 bp deletions covering about onethird of pC194 and (b) small 120–150 bp deletions (near the MspI site) in the region containing the replicative functions of pC194 (Horinouchi and Weisblum 1982). Both types of deletion render the recombinant plasmid unable to replicate in B. subtilis. pM22/1 replicates, although with a low copy-number, and is stable in B. subtilis wild type; the recA gene of E. coli does not complement any of the rec - mutations of B. subtilis. A strong instability, mainly of the E. coli and pBR322 sequences, was observed in many dna and rec mutants of B. subtilis yielding smaller plasmid with a much higher copy-number.  相似文献   

8.
Negatively charged bacteria combined with positively charged alkaline dye rhodamine 6G (Rh6G) in NaH2PO4–Na2HPO4 buffer solution pH 7.4, by electrostatic interaction. The dyed bacteria exhibited a strong fluorescence peak at 552 nm and fluorescence intensity was directly linear to Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) concentrations in the range of 7.06 × 104 to 3.53 × 107, 4.95 × 105 to 2.475 × 108 and 32.5 to 16250 colony forming unit/mL (cfu/mL) respectively, with detection limits of 3.2 × 104 cfu/mL E. coli, 2.3 × 105 cfu/mL B. subtilis and 16 cfu/mL S. aureus, respectively. Samples were cultured for 12 h, after which the linear detection range for E. coli was 2 to 88 cfu/mL. This simple, rapid and sensitive method was used for the analysis of water and drinking samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Bacillus subtilis, likeEscherichia coli, possesses several sets of genes involved in the utilization of-glucosides. InE. coli, all these genes are cryptic, including the genes forming thebgl operon, thus leading to a Bgl phenotype. We screened forB. subtilis chromosomal DNA fragments capable of reverting the Bgl+ phenotype associated with anE. coli hns mutant to the Bgl wild-type phenotype. OneB. subtilis chromosomal fragment having this property was selected. It contained a putative Ribonucleic AntiTerminator binding site (RAT sequence) upstream from thebglP gene. Deletion studies as well as subcloning experiments allowed us to prove that the putativeB. subtilis bglP RAT sequence was responsible for the repression of theE. coli bgl operon. We propose that this repression results from the titration of the BglG antiterminator protein ofE. coli bgl operon by our putativeB. subtilis bglP RAT sequence. Thus, we report evidence for a new cross interaction between heterologous RAT-antiterminator protein pairs.  相似文献   

10.
Summary We have cloned the hisH tyrA wild-type genes of Bacillus subtilis with the aid of the chimeric plasmid pBJ194, which replicates both in B. subtilis and Escherichia coli. Primary cloning was done in E. coli. The original E. coli clone, carrying the recombinant plasmid (pGR1) which complements hisH tyrA mutants of B. subtilis, was selected directly from a mixture of plated E. coli clones by replicaplating these clones onto minimal agar plates without tyrosine spread just before with competent B. subtilis cells. After overnight incubation clusters of small colonies had developed exclusively in the E. coli [pGR1] colony prints.The Tyr+ minicolonies were shown to be B. subtilis carrying pGR1 because (i) their appearance depended linearly on the number of B. subtilis cells plated, (ii) they produced extracellular protease and amylase and (iii) plasmids could be reisolated from the minicolonies and used to transform B. subtilis recE4 tyrA1 both to Cmr and Tyr+.Plasmid pGR1 transfer through replica plating was compared with plasmid transfer in liquid. Both systems depended on transformable B. subtilis strains and were sensitive to DNAseI. However, whereas integration of the tyrA + gene into the chromosome and concomittant loss of plasmids occurred frequently during regular plasmid transformation of Rec+ B. subtilis, this was a rare event during plasmid transfer through replica plating.  相似文献   

11.
The survival of lux-marked recombinants of Escherichia coli and Bacillus subtilis was studied in the rhizosphere of bean (Phaseolus vulgaris L.) and in bulk soil. The number of E. coli (pSB343) containing a complete lux operon did not differ significantly according to whether they were introduced into soil separately or together with a non-luminescent mutant Pseudomonas fluorescens R2fN. When genetically altered strains of E. coli and B. subtilis bearing a complete or an incomplete lux-reporter system were introduced into soil, the numbers of surviving cells were the same both in the rhizosphere and bulk soil. The insertion of lux genes into bacterial strains therefore does not affect their competitiveness and survival in the rhizosphere and bulk soil.The author is with the Department of Microbiology, University of Silesia, Jagielloska 28, 40-032 Katowice, Poland  相似文献   

12.
Summary A cluster of three genes involved in d-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis d-xylose isomerase (68% and 77%, respectively), and to E. coli d-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment d-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of d-xylose isomerases of different bacteria suggests that L. pentosus d-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli d-xylose isomerase and not to a second similarity group comprising d-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5-xylR (1167 bp, repressor) — xylA (1350 bp, D-xylose isomerase) — xylB (1506 bp, d-xylulose kinase) — 3 is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.  相似文献   

13.
Sierd Bron  Erik Luxen 《Plasmid》1985,14(3):235-244
To study plasmid instability in Bacillus subtilis the pUB110-derived hybrid plasmid pLB2 (3.6 kb) and the bifunctional replicon pLB5 (5.9 kb), able to replicate in B. subtilis and Escherichia coli, were constructed. In both vectors homologous B. subtilis, or heterologous E. coli DNA fragments of various lengths were inserted. Irrespective of the source of the cloned DNA, the segregational stability of the recombinant plasmids in B. subtilis was severely affected by the DNA inserts. In contrast, no instability was observed in E. coli. In B. subtilis a steep inverse relationship existed between the size of the inserts and the level of stability. Increased size of the pLB plasmids resulted in strongly reduced copy numbers. This seems to be the primary cause of the size-dependent segregational instability.  相似文献   

14.
Summary A hybrid plasmid, pOXN29 (10.4 Mdal), coding the xylanase (xynA) and -xylosidase (xynB) genes of Bacillus pumilus IPO was constructed by the ligation of pBR322 and a 7.7 Mdal PstI-fragment of chromosomal DNA as reported in our previous paper (Panbangred et al. 1983). A deletion plasmid of pOXN29, pOXN293 (9.2 Mdal), which contains xynA and xynB, was ligated with pUB110 at an EcoRI site, and used to transform B. subtilis MI111. Two selected clones of B. subtilis as xylanase hyper-producers contained plasmids pOXW11 (4.2 Mdal) and pOXW12 (4.0 Mdal), both consisting of only pUB110, xynA, and its flanking regions, as the result of spontaneous deletion. These B. subtilis clones produced 2.7–3.0 times as much xylanase as B. pumilus. Escherichia coli and B. subtilis clones harbouring the hybrid plasmids synthesized xylanase and -xylosidase constitutively, whereas both enzymes were induced by xylose in B. pumilus.Xylanase synthesized by B. subtilis harbouring pOXW11 or pOXW12 was excreted into the medium like that of B. pumilus IPO, but xylanase synthesized in E. coli harbouring pOXN29, 293 or pOXW1 coding xynA was intracellular. In a previous investigation (Panbangred et al. 1983), xylanase was found to be located in the cytoplasm, not the periplasm nor the membrane fraction in E. coli cells harbouring pOXN29 derivatives. In spite of the abnormal location of xylanase synthesized in E. coli, the signal peptide was processed in the same way as in B. pumilus, with the same molecular weight and the same amino terminal sequences of xylanase prepared from E. coli cells and B. pumilus culture fluid.  相似文献   

15.
Kim JY 《Biotechnology letters》2003,25(17):1445-1449
A gene coding for endo--1,3-1,4-glucanase (lichenase) containing a recombinant plasmid, pLL200K, was transferred from Bacillus circulans into a new shuttle plasmid, pLLS920, by ligating linearized DNAs of pLL200K and pUB110. B. subtilis RM125 and B. megaterium ATCC14945 transformed with pLLS920 produced the endo--1,3-1,4-glucanase. The enzyme was produced during active growth with maximum activity. The B. subtilis (pLLS920) enzyme was 83 times (8522 mU ml–1) more active than that of the gene donor cells (103 mU ml–1). The B. megaterium (pLLS920) enzyme was 7 times (735 mU ml–1) more active than that of the gene donor cells. While E. coli secreted only about 10% of the produced enzyme, B. subtilis excreted the enzyme completely into the medium and B. megaterium by about 98%. The plasmid pLLS920 was stable in B. megaterium (98%), and in B. subtilis (51%) but not in E. coli (29%).  相似文献   

16.
Bacillus subtilis and Escherichia coli K12 (both transformed for human leukocyte interferon production) and Escherichia coli B/r and Sporotrichum thermophile (a deuteromycete) were cultivated in submersed culture and the culture fluorescence recorded on-line using a fluorometer. During the cultivation of B. subtilis the signal from the fluorometer correlated with cell density and interferon production and thus could be used for process control (interferon production). However, the culture fluorescence of the other organisms did not increase (S. thermophile), was too weak to be measured with the fluorometer used (E. coli transformed for interferon production), or the signal from the fluorometer was not an accurate measure of the culture fluorescence because of the accumulation of a fluorophor in the culture medium (E. coli B/r).  相似文献   

17.
In this study, chicken peptone was produced by hydrolysing inedible parts derived from chickens using endo-protease and exo-protease. The usefulness of chicken peptone as a nutrient source for bacteria was evaluated in comparison with other commercially produced peptones (animal, soy and casein-derived peptone). Escherichia coli and Bacillus subtilis were used as test strains to determine the effect of peptones from different sources on their growth ability. Both bacteria were successfully cultured in chicken peptone solution, which is similar to peptone solution containing commercial peptones apart from animal peptone. In chemical analysis, chicken peptone contained 12·0% nitrogen; this was similar to the nitrogen content from other commercial peptone sources, except for the 9·0% nitrogen found in soy peptones. The molecular weight of the peptone was determined by gel filtration chromatography, and those of all peptone, except animal-derived peptone, were found to be <5000 Da. In addition, when B. subtilis was cultured in a medium containing chicken peptone, it was shown that the protease activity was highest as compared with other commercial peptones. From these results, it is suggested that chicken peptone can be utilized for microbial culture, and this is an effective method to reuse chicken waste.  相似文献   

18.
利用放射型根瘤菌WSH2 6 0 1(RhizobiumradiobacterWSH2 6 0 1)重点考察了葡萄糖、蔗糖、玉米浆和蛋白胨、添加物以及流加发酵对细胞生长和产辅酶Q1 0 的影响 ,结果表明 ,葡萄糖和蔗糖适合于生产辅酶Q1 0 的最佳浓度分别为 30g L和 40g L ;辅酶Q1 0 发酵时玉米浆和蛋白胨的最适浓度分别为 11g L和 16g L ;添加蕃茄汁、玉米浆能提高发酵液的生物量 ,玉米浆、异戊醇、L 甲硫氨基酸等能促进辅酶Q1 0 的积累 ;与分批发酵相比 ,在 7L罐上流加蔗糖其细胞生物量 (DCW)和辅酶Q1 0 积累量增加 ,若在流加蔗糖的同时流加适当浓度的玉米浆能显著提高辅酶Q1 0 的产量 ,最大产量达到 5 2 .4mg L ;最大生物量 (DCW)和胞内辅酶Q1 0 含量 (C B值 )分别达到 2 6 .4g L和 2 .38mg g DCW ,比不流加的分批发酵分别提高 5 3 %和 33% ,比只流加蔗糖分别提高 2 4%和 2 6 %。  相似文献   

19.
Summary The plasmid pBC16 (4.25 kbases), originally isolated from Bacillus cereus, determines tetracycline resistance and can be transformed into competent cells of B. subtilis. A miniplasmid of pBC16 (pBC16-1), 2,7 kb) which has lost an EcoRI fragment of pBC16 retains the replication functions and the tetracycline resistance. This plasmid which carries only one EcoRI site has been joined in vitro to pBS1, a cryptic plasmid previously isolated from B. subtilis and shown to carry also a single EcoRI site (Bernhard et al., 1978). The recombinant plasmid is unstable and dissociates into the plasmid pBS161 (8.2 kb) and the smaller plasmid pBS162 (2.1 kb). Plasmid pBS161 retains the tetracycline resistance. It possesses a single EcoRI site and 6 HindIII sites. The largest HindIII fragment of pBS161 carries the tetracycline resistance gene and the replication function. After circularization in vitro of this fragment a new plasmid, pBS161-1 is generated, which can be used as a HindIII and EcoRI cloning vector in Bacillus subtilis.Hybrid plasmids consisting of the E. coli plasmids pBR322, pWL7 or pAC184 and different HindIII fragments of pBS161 were constructed in vitro. Hybrids containing together with the E. coli plasmid the largest HindIII fragment of pBS161 can replicate in E. coli and B. subtilis. In E. coli only the replicon of the E. coli plasmid part is functioning whereas in B. subtilis replication of the hybrid plasmid is under the control of the Bacillus replicon. The tetracycline resistance of the B. subtilis plasmid is expressed in E. coli, but several antibiotic resistances of the E. coli plasmids (ampicillin, kanamycin and chloramphenicol) are not expressed in B. subtilis. The hybrid plasmids seem to be more unstable in B. subtilis than in E. coli.  相似文献   

20.
Guo X  Li D  Lu W  Piao X  Chen X 《Antonie van Leeuwenhoek》2006,90(2):139-146
A total of 124 samples were collected from the intestine of broiler chickens, piglet faeces, fermented foods, soils and Chinese herbs. More than 750 strains of aerobic, spore-forming bacteria were isolated from these samples. The inhibitory activity of these spore-forming strains against Escherichia coli K88, E. coli K99, Salmonella typhimurium and Staphylococcus aureus was assessed using a disc plate diffusion assay. The six bacilli with the largest inhibition zones against the four indicator bacteria were chosen and assessed for their resistance to unfavorable conditions within simulated gut environments. The strain Bacillus subtilis MA139 showed full resistance to pH 2, 0.3% bile salts and exhibited the highest antimicrobial activity. Based on these results, B. subtilis MA139 was selected as a potential probiotic and fed to piglets at concentrations of 2.2 × 105, 2.2 × 106 or 2.2 × 107 CFU/g of feed during a 28-day feeding trial. A negative control consisting of the basal diet with no additives and a positive control consisting of the basal diet supplemented with 16 g/ton flavomycin were also included. Ninety piglets between 35 and 40 days old were used in the in vivo animal trials. B. subtilis MA139 enhanced daily gain (P = 0.10) and feed conversion (P = 0.03) compared with the negative control. The performance of pigs fed B. subtilis MA139 supplemented diets did not differ from that of pigs fed the antibiotic diet. There was a significant increase in Lactobacilli cell counts (P = 0.02) and a numerical decrease in E. coli counts (P = 0.05) in the faecal samples of pigs fed B. subtilis MA139 with 2.2 × 105 CFU/g of feed. The overall results of this study show that the use of initial co-culture with indicator pathogens, a disc plate diffusion assay and simulated gut environment tolerance tests is one of effective methods of screening Bacillus for probiotic use and that B. subtilis MA139 is a promising alternative to antibiotics for use as a feed additive in piglet diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号