首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Base composition varies among and within eukaryote genomes. Although mutational bias and selection have initially been invoked, more recently GC-biased gene conversion (gBGC) has been proposed to play a central role in shaping nucleotide landscapes, especially in yeast, mammals, and birds. gBGC is a kind of meiotic drive in favor of G and C alleles, associated with recombination. Previous studies have also suggested that gBGC could be at work in grass genomes. However, these studies were carried on third codon positions that can undergo selection on codon usage. As most preferred codons end in G or C in grasses, gBGC and selection can be confounded. Here we investigated further the forces that might drive GC content evolution in the rice genus using both coding and noncoding sequences. We found that recombination rates correlate positively with equilibrium GC content and that selfing species (Oryza sativa and O. glaberrima) have significantly lower equilibrium GC content compared with more outcrossing species. As recombination is less efficient in selfing species, these results suggest that recombination drives GC content. We also detected a positive relationship between expression levels and GC content in third codon positions, suggesting that selection favors codons ending with G or C bases. However, the correlation between GC content and recombination cannot be explained by selection on codon usage alone as it was also observed in noncoding positions. Finally, analyses of polymorphism data ruled out the hypothesis that genomic variation in GC content is due to mutational processes. Our results suggest that both gBGC and selection on codon usage affect GC content in the Oryza genus and likely in other grass species.  相似文献   

2.
Chlamydia trachomatis (C.t) is a Gram-negative obligate intracellular bacteria and is a major causative of infectious blindness and sexually transmitted diseases. Among the varied serovars of this organism, A, B and C are reported as prominent ocular pathogens. Genomic studies of these strains shall aid in deciphering potential drug targets and genomic influence on pathogenesis. Hence, in this study we performed deep statistical profiling of codon usage in these serovars. The overall base composition analysis reveals that these serovars are over biased to AU than GC. Similarly, relative synonymous codon usage also showed preference towards A/U ending codons. Parity Rule 2 analysis inferred unequal distribution of AT and GC, indicative of other unknown factors acting along with mutational pressure to influence codon usage bias (CUB). Moreover, absolute quantification of CUB also revealed lower bias across these serovars. The effect of natural selection on CUB was also confirmed by neutrality plot, reinforcing natural selection under mutational pressure turned to be a pivotal role in shaping the CUB in the strains studied. Correspondence analysis (COA) clarified that, C.t C/TW-3 to show a unique trend in codon usage variation. Host influence analysis on shaping the codon usage pattern also inferred some speculative relativity. In a nutshell, our finding suggests that mutational pressure is the dominating factor in shaping CUB in the strains studied, followed by natural selection. We also propose potential drug targets based on cumulative analysis of strand bias, CUB and human non-homologue screening.  相似文献   

3.
It is well known that an amino acid can be encoded by more than one codon, called synonymous codons. The preferential use of one particular codon for coding an amino acid is referred to as codon usage bias (CUB). A quantitative analytical method, CUB and a related tool, Codon Adaptative Index have been applied to comparatively study whole genomes of a few pathogenic Trypanosomatid species. This quantitative attempt is of direct help in the comparison of qualitative features like mutational and translational selection. Pathogens of the Leishmania and Trypanosoma genus cause debilitating disease and suffering in human beings and animals. Of these, whole genome sequences are available for only five species. The complete coding sequences (CDS), highly expressed, essential and low expressed genes have all been studied for their CUB signature. The codon usage bias of essential genes and highly expressed genes show distribution similar to codon usage bias of all CDSs in Trypanosomatids. Translational selection is the dominant force selecting the preferred codon, and selection due to mutation is negligible. In contrast to an earlier study done on these pathogens, it is found in this work that CUB and CAI may be used to distinguish the Trypanosomatid genomes at the sub-genus level. Further, CUB may effectively be used as a signature of the species differentiation by using Principal Component Analysis (PCA).

Abbreviations

CUB - Codon Usage Bias, CAI - Codon Adaptative Index, CDS - Coding sequences, t-RNA - Transfer RNA, PCA - Principal Component Analysis.  相似文献   

4.
Codon usage bias (CUB) results from the complex interplay between translational selection and mutational biases. Current methods for CUB analysis apply heuristics to integrate both components, limiting the depth and scope of CUB analysis as a technique to probe into the evolution and optimization of protein-coding genes. Here we introduce a self-consistent CUB index (scnRCA) that incorporates implicit correction for mutational biases, facilitating exploration of the translational selection component of CUB. We validate this technique using gene expression data and we apply it to a detailed analysis of CUB in the Pseudomonadales. Our results illustrate how the selective enrichment of specific codons among highly expressed genes is preserved in the context of genome-wide shifts in codon frequencies, and how the balance between mutational and translational biases leads to varying definitions of codon optimality. We extend this analysis to other moderate and fast growing bacteria and we provide unified support for the hypothesis that C- and A-ending codons of two-box amino acids, and the U-ending codons of four-box amino acids, are systematically enriched among highly expressed genes across bacteria. The use of an unbiased estimator of CUB allows us to report for the first time that the signature of translational selection is strongly conserved in the Pseudomonadales in spite of drastic changes in genome composition, and extends well beyond the core set of highly optimized genes in each genome. We generalize these results to other moderate and fast growing bacteria, hinting at selection for a universal pattern of gene expression that is conserved and detectable in conserved patterns of codon usage bias.  相似文献   

5.
落叶松-杨栅锈菌基因组密码子使用偏好分析   总被引:1,自引:0,他引:1  
周显臻  曹支敏  于丹 《菌物学报》2020,39(2):289-297
为了解落叶松‐杨栅锈菌密码子使用模式,并探究影响其密码子偏好形成的因素,本研究利用CondonW对落叶松‐杨栅锈菌标准菌株98AG31基因组中14 650个基因进行分析,计算基因的有效密码子数,及64个密码子的相对使用度等偏好性参数。结果表明,落叶松‐杨栅锈菌全基因组水平的密码子偏好程度较低,只有少数基因呈现出高偏好性。落叶松‐杨栅锈菌的高频密码子多以A或T结尾,而最优密码子则倾向以G或C结尾。PR2-plot分析及ENC-plot曲线与中性绘图分析显示,落叶松‐杨栅锈菌基因密码子使用模式受到选择压力和突变压力等多重因素的影响,相较于选择压力,落叶松‐杨栅锈菌基因密码子的偏好更多地受到突变压力的影响。相关性分析表明,密码子碱基组成会对密码子偏好性产生影响,其他因素如序列长度等均不会影响密码子偏好性。  相似文献   

6.
TP53 gene is known as the “guardian of the genome” as it plays a vital role in regulating cell cycle, cell proliferation, DNA damage repair, initiation of programmed cell death and suppressing tumor growth. Non uniform usage of synonymous codons for a specific amino acid during translation of protein known as codon usage bias (CUB) is a unique property of the genome and shows species specific deviation. Analysis of codon usage bias with compositional dynamics of coding sequences has contributed to the better understanding of the molecular mechanism and the evolution of a particular gene. In this study, the complete nucleotide coding sequences of TP53 gene from eight different mammalian species were used for CUB analysis. Our results showed that the codon usage patterns in TP53 gene across different mammalian species has been influenced by GC bias particularly GC3 and a moderate bias exists in the codon usage of TP53 gene. Moreover, we observed that nature has highly favored the most over represented codon CTG for leucine amino acid but selected against the ATA codon for isoleucine in TP53 gene across all mammalian species during the course of evolution.  相似文献   

7.
The assumption that conservation of sequence implies the action of purifying selection is central to diverse methodologies to infer functional importance. GC-biased gene conversion (gBGC), a meiotic mismatch repair bias strongly favouring GC over AT, can in principle mimic the action of selection, this being thought to be especially important in mammals. As mutation is GC→AT biased, to demonstrate that gBGC does indeed cause false signals requires evidence that an AT-rich residue is selectively optimal compared to its more GC-rich allele, while showing also that the GC-rich alternative is conserved. We propose that mammalian stop codon evolution provides a robust test case. Although in most taxa TAA is the optimal stop codon, TGA is both abundant and conserved in mammalian genomes. We show that this mammalian exceptionalism is well explained by gBGC mimicking purifying selection and that TAA is the selectively optimal codon. Supportive of gBGC, we observe (i) TGA usage trends are consistent at the focal stop codon and elsewhere (in UTR sequences); (ii) that higher TGA usage and higher TAA→TGA substitution rates are predicted by a high recombination rate; and (iii) across species the difference in TAA <-> TGA substitution rates between GC-rich and GC-poor genes is largest in genomes that possess higher between-gene GC variation. TAA optimality is supported both by enrichment in highly expressed genes and trends associated with effective population size. High TGA usage and high TAA→TGA rates in mammals are thus consistent with gBGC’s predicted ability to “drive” deleterious mutations and supports the hypothesis that sequence conservation need not be indicative of purifying selection. A general trend for GC-rich trinucleotides to reside at frequencies far above their mutational equilibrium in high recombining domains supports the generality of these results.

Is sequence conservation a sign of purifying selection and hence functional importance? This analysis of why mammals use and conserve the most error-prone stop codon suggests not, consistent with GC-biased gene conversion’s predicted ability to “drive” deleterious mutations and supporting the hypothesis that sequence conservation need not be indicative of purifying selection.  相似文献   

8.
Enterogenic Escherichia coli (ETEC) F18 strains are the main pathogenic bacteria causing severe diarrhea in humans and domestic animals. However, the information about synonymous codon usage pattern of ETEC F18 genome remains unclear. We conducted a genome-wide analysis of synonymous codon usage patterns in the ETEC F18 strain SRA: SAMN02471895. After filtering of the complete genome sequence, 4327 coding sequences were analyzed using multivariate statistical methods to calculate synonymous codon usage patterns and to evaluate the influence of various factors in shaping the codon usage. The mean GC content was 51.38%, with a slight preference for G/C-ending codons. Twenty-two codons were determined as ‘‘optimal codons”. ENC plots showed some of the genes were on or close to the expected curve, while only points with low-ENC values were below the curve. PR2 analysis showed that GC and AT were not used proportionally, suggesting major roles for mutational pressure and natural selection in shaping usage. Neutrality plots showed a significant correlation between GC12 and GC3, suggesting that mutational pressure is responsible for nucleotide composition in shaping the strength of codon usage. Translational selection was the main factor shaping the codon usage pattern of ETEC F18 genome, while other factors such as protein length, GRAVY and ARO values also influenced codon usage to some extent. We analyzed the codon usage pattern systematically and identified the factors shaping codon usage bias in the ETEC F18 genome. Such information further elucidates the mechanisms of synonymous codon usage bias and provides the basis of molecular genetic engineering and evolutionary studies.  相似文献   

9.
Among a sample of 39 Geodia cydonium (Demospongiae, Porifera) genes, with an average G + C content of 51.2%, extensive structural heterogeneity and considerable variations in synonymous codon usage were found. The G + C content of coding sequences and G + C content at silent codon positions (GC3S) varied from 42.4 to 59.2% and from 35.6 to 76.5%, respectively. Correspondence analysis of 39 genes revealed that putative highly expressed genes preferentially use a limited subset of codons, which were therefore defined as preferred codons in G. cydonium . A total of 22 preferred codons for 18 amino acids with synonyms in codons were identified and they all (with one exception) end with C or G. Among these codons there are also C- and G-ending codons which were previously identified as codons optimal for translation in a variety of eukaryotes, including metazoans and plants. The bias in synonymous codon usage in putative highly expressed G. cydonium genes is moderate, indicating that these genes are not shaped under strong natural selection. We postulate that the preference for C- and G-ending codons was already established in the ancestor of all Metazoa, including also sponges. This ancestor most probably also had a G + C rich genome. The selection toward C- and G-ending codons has been largely conserved throughout eukaryote evolution; exceptions are, for example, mammals for which strong mutational biases caused switches from that rule.  相似文献   

10.
11.
Codon usage patterns in cytochrome oxidase I across multiple insect orders   总被引:2,自引:0,他引:2  
Synonymous codon usage bias is determined by a combination of mutational biases, selection at the level of translation, and genetic drift. In a study of mtDNA in insects, we analyzed patterns of codon usage across a phylogeny of 88 insect species spanning 12 orders. We employed a likelihood-based method for estimating levels of codon bias and determining major codon preference that removes the possible effects of genome nucleotide composition bias. Three questions are addressed: (1) How variable are codon bias levels across the phylogeny? (2) How variable are major codon preferences? and (3) Are there phylogenetic constraints on codon bias or preference? There is high variation in the level of codon bias values among the 88 taxa, but few readily apparent phylogenetic patterns. Bias level shifts within the lepidopteran genus Papilio are most likely a result of population size effects. Shifts in major codon preference occur across the tree in all of the amino acids in which there was bias of some level. The vast majority of changes involves double-preference models, however, and shifts between single preferred codons within orders occur only 11 times. These shifts among codons in double-preference models are phylogenetically conservative.  相似文献   

12.
Most previous studies of the evolution of codon usage bias (CUB) and intronic GC content (iGC) in Drosophila melanogaster were based on between-species comparisons, reflecting long-term evolutionary events. However, a complete picture of the evolution of CUB and iGC cannot be drawn without knowledge of their more recent evolutionary history. Here, we used a polymorphism dataset collected from Zimbabwe to study patterns of the recent evolution of CUB and iGC. Analyzing coding and intronic data jointly with a model which can simultaneously estimate selection, mutational, and demographic parameters, we have found that: (1) natural selection is probably acting on synonymous codons; (2) a constant population size model seems to be sufficient to explain most of the observed synonymous polymorphism patterns; (3) GC is favored over AT in introns. In agreement with the long-term evolutionary patterns, ongoing selection acting on X-linked synonymous codons is stronger than that acting on autosomal codons. The selective differences between preferred and unpreferred codons tend to be greater than the differences between GC and AT in introns, suggesting that natural selection, not just biased gene conversion, may have influenced the evolution of CUB. Interestingly, evidence for non-equilibrium evolution comes exclusively from the intronic data. However, three different models, an equilibrium model with two classes of selected sites and two non-equilibrium models with changes in either population size or mutational parameters, fit the intronic data equally well. These results show that using inadequate selection (or demographic) models can result in incorrect estimates of demographic (or selection) parameters.  相似文献   

13.
Codon usage bias (CUB) is an omnipresent phenomenon, which occurs in nearly all organisms. Previous studies of codon bias in Plasmodium species were based on a limited dataset. This study uses whole genome datasets for comparative genome analysis of six Plasmodium species using CUB and other related methods for the first time. Codon usage bias, compositional variation in translated amino acid frequency, effective number of codons and optimal codons are analyzed for P.falciparum, P.vivax, P.knowlesi, P.berghei, P.chabaudii and P.yoelli. A plot of effective number of codons versus GC3 shows their differential codon usage pattern arises due to a combination of mutational and translational selection pressure. The increased relative usage of adenine and thymine ending optimal codons in highly expressed genes of P.falciparum is the result of higher composition biased pressure, and usage of guanine and cytosine bases at third codon position can be explained by translational selection pressure acting on them. While higher usage of adenine and thymine bases at third codon position in optimal codons of P.vivax highlights the role of translational selection pressure apart from composition biased mutation pressure in shaping their codon usage pattern. The frequency of those amino acids that are encoded by AT ending codons are significantly high in P.falciparum due to action of high composition biased mutational pressure compared with other Plasmodium species. The CUB variation in the three rodent parasites, P.berghei, P.chabaudii and P.yoelli is strikingly similar to that of P.falciparum. The simian and human malarial parasite, P.knowlesi shows a variation in codon usage bias similar to P.vivax but on closer study there are differences confirmed by the method of Principal Component Analysis (PCA).

Abbreviations

CDS - Coding sequences, GC1 - GC composition at first site of codon, GC2 - GC composition at second site of codon, GC3 - GC composition at third site of codon, Ala - Alanine, Arg - Arginine, Asn - Asparagine, Asp - Aspartic acid, Cys - Cysteine, Gln - Glutamine Glu - Glutamic acid Gly - Glycine His - Histidine Ile - Isoleucine Leu - Leucine Lys - Lysine Met - Methionine Phe - Phenylalanine Pro - Proline Ser - Serine Thr - Threonine Trp - Tryptophan Tyr - Tyrosine Val - Valine.  相似文献   

14.
Phylogenetic codon models are routinely used to characterize selective regimes in coding sequences. Their parametric design, however, is still a matter of debate, in particular concerning the question of how to account for differing nucleotide frequencies and substitution rates. This problem relates to the fact that nucleotide composition in protein-coding sequences is the result of the interactions between mutation and selection. In particular, because of the structure of the genetic code, the nucleotide composition differs between the three coding positions, with the third position showing a more extreme composition. Yet, phylogenetic codon models do not correctly capture this phenomenon and instead predict that the nucleotide composition should be the same for all three positions. Alternatively, some models allow for different nucleotide rates at the three positions, an approach conflating the effects of mutation and selection on nucleotide composition. In practice, it results in inaccurate estimation of the strength of selection. Conceptually, the problem comes from the fact that phylogenetic codon models do not correctly capture the fixation bias acting against the mutational pressure at the mutation–selection equilibrium. To address this problem and to more accurately identify mutation rates and selection strength, we present an improved codon modeling approach where the fixation rate is not seen as a scalar, but as a tensor. This approach gives an accurate representation of how mutation and selection oppose each other at equilibrium and yields a reliable estimate of the mutational process, while disentangling the mean fixation probabilities prevailing in different mutational directions.  相似文献   

15.
Synonymous codon choices vary considerably among Schistosoma mansoni genes. Principal components analysis detects a single major trend among genes, which highly correlates with GC content in third codon positions and exons, but does not discriminate among putatively highly and lowly expressed genes. The effective number of codons used in each gene, and its distribution when plotted against GC3, suggests that codon usage is shaped mainly by mutational biases. The GC content of exons, GC3, 5′, 3′, and flanking (5′+ 3′+ introns) regions are all correlated among them, suggesting that variations in GC content may exist among different regions of the S. mansoni genome. We propose that this genome structure might be among the most important factors shaping codon usage in this species, although the action of selection on certain sequences cannot be excluded. Received: 10 March 1997 / Accepted: 27 June 1997  相似文献   

16.
To understand the synonymous codon usage pattern in mitochondrial genome of Antheraea assamensis, we analyzed the 13 mitochondrial protein‐coding genes of this species using a bioinformatic approach as no work was reported yet. The nucleotide composition analysis suggested that the percentages of A, T, G,and C were 33.73, 46.39, 9.7 and 10.17, respectively and the overall GC content was 19.86, that is, lower than 50% and the genes were AT rich. The mean effective number of codons of mitochondrial protein‐coding genes was 36.30 and it indicated low codon usage bias (CUB). Relative synonymous codon usage analysis suggested overrepresented and underrepresented codons in each gene and the pattern of codon usage was different among genes. Neutrality plot analysis revealed a narrow range of distribution for GC content at the third codon position and some points were diagonally distributed, suggesting both mutation pressure and natural selection influenced the CUB.  相似文献   

17.
Codon usage bias (CUB) is an important evolutionary feature in a genome and has been widely documented from prokaryotes to eukaryotes. However, the significance of CUB in the Asteraceae family has not been well understood, with no Asteraceae species having been analyzed for this characteristic. Here, we use bioinformatics approaches to comparatively analyze the general patterns and influencing factors of CUB in five Asteraceae chloroplast (cp) genomes. The results indicated that the five genomes had similar codon usage patterns, showing a strong bias towards a high representation of NNA and NNT codons. Neutrality analysis showed that these cp genomes had a narrow GC distribution and no significant correlation was observed between GC12 and GC3. Parity Rule 2 (PR2) plot analysis revealed that purines were used more frequently than pyrimidines. Effective number of codons (ENc)-plot analysis showed that most genes followed the parabolic line of trajectory, but several genes with low ENc values lying below the expected curve were also observed. Furthermore, correspondence analysis of relative synonymous codon usage (RSCU) yielded a first axis that explained only a partial amount of variation of codon usage. These findings suggested that both natural selection and mutational bias contributed to codon bias, while selection was the major force to shape the codon usage in these Asteraceae cp genomes. Our study, which is the first to investigate codon usage patterns in Asteraceae plastomes, will provide helpful information about codon distribution and variation in these species, and also shed light on the genetic and evolutionary mechanisms of codon biology within this family.  相似文献   

18.
Patterns of non-uniform usage of synonymous codons vary across genes in an organism and between species across all domains of life. This codon usage bias (CUB) is due to a combination of non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most models quantify the effects of mutation bias and selection on CUB assuming uniform mutational and other non-adaptive forces across the genome. However, non-adaptive nucleotide biases can vary within a genome due to processes such as biased gene conversion (BGC), potentially obfuscating signals of selection on codon usage. Moreover, genome-wide estimates of non-adaptive nucleotide biases are lacking for non-model organisms. We combine an unsupervised learning method with a population genetics model of synonymous coding sequence evolution to assess the impact of intragenomic variation in non-adaptive nucleotide bias on quantification of natural selection on synonymous codon usage across 49 Saccharomycotina yeasts. We find that in the absence of a priori information, unsupervised learning can be used to identify genes evolving under different non-adaptive nucleotide biases. We find that the impact of intragenomic variation in non-adaptive nucleotide bias varies widely, even among closely-related species. We show that the overall strength and direction of translational selection can be underestimated by failing to account for intragenomic variation in non-adaptive nucleotide biases. Interestingly, genes falling into clusters identified by machine learning are also physically clustered across chromosomes. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable non-adaptive nucleotide biases on codon frequencies.  相似文献   

19.
20.
Zika virus (ZIKV) is a member of the family Flaviviridae and contains a single-stranded RNA genome with positive-polarity. Like Dengue, Zika virus uses Aedes aegypti mosquito as a vector to infect human with a wide range of clinical signs, from asymptomatic to influenza-like syndrome. Despite significant progress in genomic analyses, how a viral relationship with two different hosts affect the overall fitness, constancy, and dodging of hosts immune system are elusive. Here we analyzed Zika virus codon-based evolution using eleven strains from different geographical locations. The overall codon usage was similar and slightly bias among all strains. An occurrence of A-ending in highly-preferred codons and analysis by various approaches strongly suggests that mutational bias is the main force shaping codon usage in this virus. However, natural selection and geographical realities cannot be ignored in marginal influence on codon usage. The viral genomes naturally favor Aedes aegypti over human host for tRNA pool in translation. Such findings will assist researchers in understanding elements contribute to viral adaptation and evolutionary setup with hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号