首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Frictional resistance to a penetrating body can account for more than 80% of the total resistance to penetration of soil. We measured the frictional resistance between growing root caps of maize and pea and ground and smooth glass surfaces, which was linearly correlated to load, allowing calculation of the coefficient of kinetic friction and adhesion. Coefficients of kinetic friction between the root caps and the ground and smooth glass surfaces were approximately 0.04 and 0.02, respectively, the first measurements of the frictional properties of root tips at rates approaching those of root elongation, and an order of magnitude smaller than those previously reported. Results suggest that roots are well designed for penetrating soil, and encounter only small frictional resistance on the root cap. These data provide important parameters for modelling soil stresses and deformation around growing root tips.  相似文献   

2.
This paper reports a new barley mutant missing root hairs. The mutant was spontaneously discovered among the population of wild type (Pallas, a spring barley cultivar), producing normal, 0.8 mm long root hairs. We have called the mutant bald root barley (brb). Root anatomical studies confirmed the lack of root hairs on mutant roots. Amplified Fragment Length Polymorphism (AFLP) analyses of the genomes of the mutant and Pallas supported that the brb mutant has its genetic background in Pallas. The segregation ratio of selfed F2 plants, resulting from mutant and Pallas outcross, was 1:3 (–root hairs:+root hairs), suggesting a monogenic recessive mode of inheritance.In rhizosphere studies, Pallas absorbed nearly two times more phosphorus (P) than the mutant. Most of available inorganic P in the root hair zone (0.8 mm) of Pallas was depleted, as indicated by the uniform P depletion profile near its roots. The acid phosphatase (Apase) activity near the roots of Pallas was higher and Pallas mobilised more organic P in the rhizosphere than the mutant. The higher Apase activity near Pallas roots also suggests a link between root hair formation and rhizosphere Apase activity. Hence, root hairs are important for increasing plant P uptake of inorganic as well as mobilisation of organic P in soils.Laboratory, pot and field studies showed that barley cultivars with longer root hairs (1.10 mm), extracted more P from rhizosphere soil, absorbed more P in low-P field (Olsen P=14 mg P kg–1 soil), and produced more shoot biomass than shorter root hair cultivars (0.63 mm). Especially in low-P soil, the differences in root hair length and P uptake among the cultivars were significantly larger. Based on the results, the perspectives of genetic analysis of root hairs and their importance in P uptake and field performance of cereals are discussed.  相似文献   

3.
K. M. Volkmar 《Plant and Soil》1994,163(2):197-202
The effects of conditions pre-dating germination on growth rate of impeded barley cv. Harrington roots were measured using an agar-capillary tube technique. Seedling root tips were directed into glass capillary tubes twothirds filled with agar at eight concentrations ranging from 1.6 to 9.6%, equivalent to penetrometer resistances of 25 to 1240 kPa. The rate of unrestricted root elongation (growth in air) of seed stored for 13 months (old seed), and of seed grown for a second generation without subsequent storage (new seed) was compared with growth in agar over a 24-hour interval. Root elongation rate of old and new seed was identical in the absence of resistance. At low to intermediate agar concentrations, elongation was significantly slower in roots from old, compared with new seed. At high agar concentrations root growth of old and new seed was the same. In both old and new seed, root growth through agar was greater in seed that germinated after 24, compared with 48 h. Differences in impeded root growth between old and new seed were lost in progeny of the test seed. Environmental factors that pre-date germination are an important influence on the ability of seedling roots to elongate through soil.LRS Contribution no. 3879349LRS Contribution no. 3879349  相似文献   

4.
玉米幼苗根系分泌物对芘污染的响应   总被引:1,自引:0,他引:1  
许超  林小方  夏北成 《生态学报》2010,30(12):3280-3288
根际袋土培试验研究了玉米幼苗根系分泌物中的可溶性糖、低分子量有机酸和氨基酸对不同芘污染水平(50、200、800mgkg-1,记为T1、T2、T3)的响应差异,探讨芘胁迫下植物根系的生理生态效应。结果表明,较低浓度芘可适当地刺激玉米的生长,高浓度芘处理抑制了玉米的生长,并且抑制作用随芘处理浓度的提高而增强;芘对玉米根系的影响要大于对茎叶的影响。芘胁迫下促进了根系分泌可溶性糖、低分子量有机酸和氨基酸增多。T1、T2和T3处理根系分泌物中可溶性糖、低分子量有机酸、氨基酸含量分别是T0处理的1.14、1.81、1.35倍,1.24、4.31、2.94倍,1.58、5.56、5.40倍。不同芘污染水平下,乙酸分泌量表现为T2T3T1,酒石酸和柠檬酸分泌量表现为T3T2T1,草酸分泌量表现为T3≈T2T1。芘处理对根系分泌氨基酸种类的影响不大,而对各氨基酸分泌量的变化幅度影响较大;芘胁迫处理对于18种常见氨基酸组分的分泌量的影响各不相同。不同芘污染水平下,天门冬氨酸、丝氨酸和丙氨酸分泌量表现为T3T2T1,苏氨酸、谷氨酸、脯氨酸、甘氨酸、胱氨酸、缬氨酸、甲硫氨酸、异亮氨酸、亮氨酸、酪氨酸、苯丙氨酸、赖氨酸、组氨酸、γ-氨基丁酸、鸟氨酸分泌量表现为T2T3T1。  相似文献   

5.
The recently isolated root‐hairless mutant of barley (Hordeum vulgare L), bald root barley, brb offers a unique possibility to quantify the importance of root hairs in phosphorus (P) uptake from soil. In the present study the ability of brb and the wild‐type, barley genotype Pallas producing normal root hairs to deplete P in the rhizosphere soil was investigated and the theory of diffusion and mass flow applied to compare the predicted and measured depletion profiles of diffusible P. Pallas depleted twice as much P from the rhizosphere soil as brb. The P depletion profile of Pallas uniformly extended to 0.8 mm from the root surface, which was equal to the root hair length (RHL). The model based on the theory of diffusion and mass flow explained the observed P‐depletion profile of brb, and the P depletion outside the root‐hair zone of Pallas, suggesting that the model is valid only for P movement in rhizosphere soil outside the root‐hair zone. In low‐P soil (P in soil solution 3 µm ) brb did not survive after 30 d, whereas Pallas continued to grow, confirming the importance of root hairs in plant growth in a P‐limiting environment. In high‐P soil (P in soil solution 10 µm ) both brb and Pallas maintained their growth, and they were able to produce seeds. At the high‐P concentration, RHL of the Pallas was reduced from 0.80 ± 0.2 to 0.68 ± 0.14 mm. In low‐P soil, P‐uptake rate into the roots of Pallas was 4.0 × 10?7 g mm?1 d?1 and that of brb was 1.9 × 10?7 g mm?1 d?1, which agreed well with the double amount of P depleted from the rhizosphere soil of Pallas in comparison with that of brb. In high‐P soil, the P uptake rates into the roots of brb and Pallas were 3.3 and 5.5 × 10?7 g mm?1 d?1, respectively. The results unequivocally confirmed that in a low‐P environment, root hairs are of immense importance in P acquisition and plants survival, but under high‐P conditions they may be dispensable. The characterization of phenotypes brb and Pallas and the ability to reproduce seeds offers a unique possibility of molecular mapping of QTLs and candidate genes conferring root‐hair formation and growth of barley.  相似文献   

6.
BACKGROUND AND AIMS: The impedance to root growth imposed by soil can be decreased by both mucilage secretion and the sloughing of border cells from the root cap. The aim of this study is to quantify the contribution of these two factors for maize root growth in compact soil. METHODS: These effects were evaluated by assessing growth after removing both mucilage (treatment I -- intact) and the root cap (treatment D -- decapped) from the root tip, and then by adding back 2 micro L of mucilage to both intact (treatment IM -- intact plus mucilage) and decapped (treatment DM -- decapped plus mucilage) roots. Roots were grown in either loose (0.9 Mg m(-3)) or compact (1.5 Mg m(-3)) loamy sand soils. Also examined were the effects of decapping on root penetration resistance at three soil bulk densities (1.3, 1.4 and 1.5 Mg m(-3)). KEY RESULTS: In treatment I, mucilage was visible 12 h after transplanting to the compact soil. The decapping and mucilage treatments affected neither the root elongation nor the root widening rates when the plants were grown in loose soil for 12 h. Root growth pressures of seminal axes in D, DM, I and IM treatments were 0.328, 0.288, 0.272 and 0.222 MPa, respectively, when the roots were grown in compact soil (1.5 Mg m(-3) density; 1.59 MPa penetrometer resistance). CONCLUSIONS: The contributions of mucilage and presence of the intact root cap without mucilage to the lubricating effect of root cap (percentage decrease in root penetration resistance caused by decapping) were 43 % and 58 %, respectively. The lubricating effect of the root cap was about 30 % and unaffected by the degree of soil compaction (for penetrometer resistances of 0.52, 1.20 and 1.59 MPa).  相似文献   

7.
Livesley  S.J.  Stacey  C.L.  Gregory  P.J.  Buresh  R.J. 《Plant and Soil》1999,207(2):183-193
The purpose of this study was to investigate the effects of different mesh sizes on the recovery of root length and biomass and to determine whether the degree of recovery was influenced by plant species and sample location. Sieves of 2.0, 1.0, 0.5 and 0.25 mm (4.0, 1.0, 0.25 and 0.06 mm2) mesh sizes were used to recover and measure the root length and biomass of Zea mays L. (maize) at 0–15 cm and 30–45 cm depths and of Grevillea robusta A. Cunn. ex R. Br. (grevillea) at the same depths 1.0 m and 4.5 m from a line of grevillea trees. At 0–15 cm, the coarser sieves (sum collected with 2.0 and 1.0 mm sieves) recovered approximately 80% of the total root biomass measured, but only 60% of the root length. The proportion of total maize root length and biomass recovered by the coarser sieves decreased with soil depth. The proportion of total grevillea root length recovered by the coarser sieves was similar at the two soil depths, but increased slightly with distance from the tree line. The ≥ 0.5 mm sieves recovered between 93 and 96% of grevillea and maize root biomass and between 73 and 98% of their root length, depending on the sample location. Roots passing through the 0.5 mm sieve, but recovered by the 0.25 mm sieve were about 20% of total maize root length and grevillea root length at 1.0 m from the tree line but < 5% of the total grevillea root length at 4.5 m from the tree. Roots passing through the 0.5 mm sieve but recovered by the 0.25 mm sieve contributed only slightly to root biomass. Although the ≥ 0.5 mm sieves provided adequate measurements of root biomass, the ≥ 0.25 mm sieves were required for accurate measurement of fine root length. There was no universal correction for root length and biomass underestimation when large sieve sizes were used because the proportions of length and biomass recovered depended on the plant species and on soil depth and distance from the plant. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The objective of this work was to study elongation curves of maize axile roots throughout their elongation period under field conditions. Relationships between their elongation rate and the extension rate of their branched region were also studied. Maize, early-maturing cultivar Dea, was grown on a deep, barrier-free clay loam (depth 1.80m). Trenches were dug during four periods until after silking and axile roots were excavated. Parameters measured were total length and the lengths of basal and apical unbranched zones. The rank of the bearing phytomer and general data about the carrying plant were also recorded. Results showed that axile roots from lower phytomers had similar elongation rates irrespective of the rank of the carrying phytomer. This elongation rate declined with root age. A monomolecular elongation model was fitted to the experimental data. Elongation was much slower in roots from upper phytomers. A rough linear relationship was found between the elongation rate of axile roots and the length of the apical unbranched zone. This result suggests that laterals appeared on a root segment a constant time after it was formed. Possible mechanisms with may account for the declining elongation rate with root age (increasing distance from aerial parts or adverse environmental conditions in deep soil layers) and variability between individual roots are also discussed.  相似文献   

9.
10.
Reidenbach  Gerd  Horst  Walter J. 《Plant and Soil》1997,196(2):295-300
The close relationship between nitrate depletion of the subsoil and root-length densities found in field experiments could not be explained by mathematical models simulating nitrate uptake (Wiesler and Horst, 1994). The objective of the present study was the validation of some of the assumptions made in these models namely uniform nitrate-uptake rates (NURs) independent on root age and daytime.Different techniques were developed and compared for the measurement of NUR of different root zones: (i) isolated root segments, (ii) compartmented uptake cuvettes, (iii) depletion of nitrate (water) from agarose blocks placed on specific zones of roots growing in nutrient solution and (iv) in rhizotrones filled with soil over the whole growing cycle of maize plants. All methods yielded a similar magnitude of NUR (10 - 30 pmol cm-2 s-1). However, only intact plants growing in nutrient solution as well as in soil, but not isolated root segments, showed higher NUR at apical root zones compared to more mature branching root zones by a factor of 2 - 8. The NUR of the root apex was particularly sensitive to the nitrogen demand of the plant and the assimilate supply from the shoots as affected by light intensity. At suboptimal, but not at optimal light conditions during preculture, NUR was lower in the dark than in the light. As plants matured, NUR of soil grown plants became increasingly dependent on water uptake. But even if nitrate uptake by mass flow was subtracted from total nitrate uptake, mature roots showed a surprisingly high nitrate-uptake capacity.The results indicate that the formation of root-age classes with different NUR and the assumption of lower NUR at night could improve the modelling of nitrate uptake.  相似文献   

11.
The abundance of bacteria in the rhizoplane of barley varieties was investigated at different soil nitrogen levels. Increased amendments of nitrogen resulted in higher bacterial numbers in the rhizoplane of barley seedlings of different varieties. A negative correlation was found between nitrogen level in the soil and the growth rate of the seedling roots. The effect of nitrogen on the bacterial abundances could be indirect through changed root growth and thereby changed exudation. The exudation of soluble organic carbon componds from barley seedling roots were measured in hydroponic culture. The effect of natural variation in root growth rate and of different concentrations of nitrogen in the nutrient solution was investigated. The amount of exudates consituted 2–66% of the dry weight increase in root biomass, depending on the root growth. Slower growing roots released considerably more organic carbon per unit root weight than faster growing roots. The variation in root exudation appeared to be mainly explained by differences in root growth, rather than of the nitrogen concentration in the nutrient solution. A significantly higher exudation rate was found during day time compared to night.  相似文献   

12.
Transparent plastic minirhizotron tubes have been used to evaluate spatial and temporal growth activities of plant root systems. Root number was estimated from video recordings of roots intersecting minirhizotron tubes and of washed roots extracted from monoliths of the same soil profiles at the physiological maturity stage of a maize (Zea mays L.) crop. Root length was measured by the line intercept (LI) and computer image processing (CIP) methods from the monolith samples.There was a slight significant correlation (r=0.28, p<0.005) between the number of roots measured by minirhizotron and root lengths measured by the LI method, however, no correlation was found with the CIP method. Using a single regression line, root number was underestimated by the minirhizotron method at depths between 0–7.6 cm. A correlation was found between root length estimated by LI and CIP. The slope of estimated RLD was significant with depth for these two methods. Root length density (RLD) measured by CIP showed a more erratic decline with distance from the plant row and soil surface than the LI method.  相似文献   

13.
Root research has been hampered by a lack of good methods and by the amount of time involved in making measurements. The use of the minirhizotron as a quantitative tool requires comparison with conventional destructive methods. This study was conducted in the greenhouse to compare the minirhizotron technique with core and monolith methods in quantifying barley (Hordeum vulgare L.) and fababean (Vicia faba L.) root distribution. Plants were grown in boxes (80 cm long × 80 cm wide × 75 cm deep) in a hexagonal arrangement to minimize the effects of rooting anistrophy. Minirhizotron observations and destructive sampling to a depth of 70 cm using core and monolith methods were performed at the ripening growth stage. Total root length for the entire depth interval was generally higher in barley (159–309 m) than fababean (110–226 m). Significant correlation coefficients between monolith and core methods for root length density (RLD, cm cm–3) was observed in both crops (p 0.01). A method and depth interaction showed no significant differences in fababean RLD distribution measured by core and monolith methods. However, the RLD was different for the uppermost 40 cm depth in barley. The relationship for RLD between minirhizotron and core methods was significant only in barley (r=0.77*). For both crops, estimates of RLD in the top 10-cm layer by the minirhizotron technique were lower than those by core and monolith techniques. In contrast, estimates of RLD were higher in fababean at a depth >30 cm. Destructive sampling still remains the method to quantify root growth in the 0–10 cm soil layer. ei]B E Clothier  相似文献   

14.
Abstract A comparison was made of the content of total and some individual fatty acids in grains of nine barley varieties grown at six sites in Belgium. The varieties represented six- and two-rowed winter types and two-rowed spring types. The results showed that the winter types contain more linolenic acid (C18 : 3) than spring types and that six-rowed barleys have less total fatty acids than two-rowed barleys, due mainly to a low concentration of palmitic (C16:0), oleic (CI8 : 1) and linoleic (C18 : 2) acids. Analysis of variance showed that fatty acid content is affected by both the genotype and the environment and multiple regression analysis suggested that weather conditions before and after flowering affected lipid composition.  相似文献   

15.
Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map‐based cloning revealed that the rth5 gene encodes a monocot‐specific NADPH oxidase. RNA‐Seq, in situ hybridization and qRT‐PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild‐type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA‐Seq analysis of 6‐day‐old rth5 versus wild‐type primary roots revealed significant over‐representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups ‘response to oxidative stress’ and ‘cellulose biosynthesis’ were most prominently represented.  相似文献   

16.
Quantification of root dynamics by destructive methods is confounded by high coefficients of variation and loss of fine roots. The minirhizotron technique is non-destructive and allows for sequential root observations to be made at the same depth in situ. Observations can be stored on video tape which facilitates data handling and computer-aided image processing. A color composite technique using digital image analyses was adapted in this study to detect barley root dynamics from sequential minirhizotron images. Plants were grown in the greenhouse in boxes (80 × 80 × 75 cm) containing soil from a surface horizon of a Typic Cryoboroll. A minirhizotron was installed at a 45°C angle in each box. Roots intersecting the minirhizotron were observed and video-recorded at tillering, stem extension, heading, dough and ripening growth stages. The images from a particular depth were digitized from the analog video then registered to each other. Discrimination of roots from the soil matrix gave quantitative estimates of root appearance and disappearance. Changes in root appearance and disappearance were detected by assigning a separate primary color (red, green, blue) to selected growth stages, then overlaying the images to create red-green and red-green-blue color composites. The resulting composites allowed for a visual interpretation and quantification of barley root dynamics in situ.  相似文献   

17.
基于4月底到9月底东北地区玉米农田土壤呼吸作用全生长季的观测,阐明了土壤呼吸作用的空间异质性特征,综合分析了水热因子、土壤性质、根系生物量及其测定位置对土壤呼吸作用空间异质性的影响,并对生长季中根系呼吸作用占土壤呼吸作用的比例进行了估算。结果表明,在植株尺度上,土壤呼吸作用存在着明显的空间异质性,较高的土壤呼吸速率通常出现在靠近玉米植株的地方。根系生物量的分布格局是影响土壤呼吸作用空间异质性的关键因素。在空间尺度上,土壤呼吸作用与根系生物量呈显著的线性关系,而土壤湿度、土壤有机质、全氮和碳氮比对土壤呼吸作用空间异质性的影响并不显著。通过建立土壤呼吸作用与玉米根系生物量的回归方程,对根系呼吸作用占土壤呼吸作用的比例进行了间接估算。玉米生长季中,根系呼吸作用占土壤呼吸作用的比例在43.1%~63.6%之间波动,均值为54.5%。  相似文献   

18.
Abstract. Barley plants ( Hordeum vulgare L. cv. Midas) raised under controlled environmental conditions were sprayed with either of the gametocides Ethrel and RH-531. At various times after spraying the anthers were fixed for light and electron microscopy. Abortion of sporogenous cells occurred in plants sprayed at both pre- and post-meiotic stages of microsporogenesis. In contrast, cells of the tapetum were insensitive to the immediate effects of gametocides. The cytological effects of the gametocides are similar to those induced by male sterile genes in a variety of plants. These range from the induction of additional mitotic divisions in the pollen mother cells to exine malformations on developing microspores. These observations are discussed in terms of the control mechanisms operating during microsporogenesis.  相似文献   

19.
Kim YS  Kim TW  Kim SK 《Phytochemistry》2005,66(9):1000-1006
GC-MS analysis revealed that primary roots of maize contain 6-deoxocathasterone, 6-deoxoteasterone and 6-deoxotyphasterol. These brassinosteroids, and the previously identified campesterol, campestanol, 6-deoxocastasterone and castasterone, in the roots are members of a biosynthetic pathway to castasterone, namely the late C-6 oxidation pathway, suggesting that its biosynthetic pathway is operative in the roots. To verify this, a cell-free enzyme extract was prepared from maize roots, and enzymatic conversions from campesterol to castasterone through the aforementioned sterols and brassinosteroids were examined. The presence for the biosynthetic sequences, campesterol-->24-methylcholest-4-en-3beta-ol-->24-methylcholest-4-en-3-one-->24-methylcholest-5 alpha-cholestan-3-one-->campestanol and 6-deoxoteasterone-->6-deoxo-3-dehydroteasterone-->6-deoxotyphasterol-->6-deoxocastasterone-->castasterone were demonstrated. These results indicate that maize roots contain a complete set of enzymes involved in the late C-6 oxidation pathway, thereby demonstrating that endogenous brassinosteroids are biosynthesized in the roots.  相似文献   

20.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号