首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
《Acta Oecologica》2000,21(2):139-147
The knowledge on plant species' morphological plasticity has mostly been gained in laboratory and greenhouse studies, and has hardly ever been verified in the field, where the interactive effects of light and nutrient availability operate in combination with biotic interactions. We studied morphological plasticity of shoot in three herbaceous species with different growth-forms and requirements – Hepatica nobilis, Lathyrus vernus, Sesleria caerulea – in a field experiment, established in an annually mown species-rich grassland. Above- and below-ground resource availability was manipulated by fertilization and additional illumination (using mirrors) in a two-factorial randomized design. The main hypothesis was that fertilization of the presumably non-light-limited grassland community would cause light deficit in the canopy, indicated by adaptive plastic responses in shade tolerant species and inevitable plastic responses in light-demanding species. Plants did not respond to additional illumination in non-fertilized plots, showing that the growth of the studied species in this grassland canopy is rather nutrient than light limited. The three species showed strikingly different patterns of response to manipulation of light availability in fertilized treatment. There, the shade-tolerant Hepatica showed an adaptive plasticity by adjusting its morphology to shadier conditions (e.g. by producing shorter petioles). The light-demanding Sesleria could not make use of the extra nutrients without the additional light resource (its growth being light limited in fertilized plots) and produced more shoot biomass and leaf area only with below-ground as well as above-ground resource addition (inevitable plastic response). In Lathyrus, only the main effects of fertilization and illumination were significant.  相似文献   

2.
Background and AimsLessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory?MethodsWe sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species.Key ResultsRoot traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory.ConclusionsOne of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.  相似文献   

3.
Phosphate uptake through above-ground thalli vs. subterranean rhizoids has been compared in siphonaceous rhizophytic green algal species from five globally distributed tropical genera: Avrainvillea nigricans Decaisne, Caulerpa lanuginosa J. Agardh, Halimeda incrassata (J. Ellis) J.V. Lamouroux, Penicillus capitatus Lamarck, and Udotea flabellum (J. Ellis & Solander) M. Howe. Plants were collected, acclimated to lab conditions for 3 days, and then incubated for 8 h at saturating light intensity with 30 μM PO43− added to their above-ground thallus or below-ground rhizoids. Percent tissue phosphorus was then compared to control specimens, which were run simultaneously in the absence of phosphate. The two fleshy species, A. nigricans and C. lanuginosa, showed no significant differences in tissue nutrient status, and displayed much larger variation among controls than the three calcified species. Calcified species showed greater phosphorus content after being exposed to either above- or below-ground thallus portions, indicating that these seaweeds can respond to short term increases in nutrient availability and have a more regulated nutrient acquisition mechanism. Results suggest that calcification may play an important role in phosphorus absorption.  相似文献   

4.
Changes in plant biomass allocation in response to varying resource availabilities may result from ontogenetic drift caused by allometric growth (i.e., apparent plasticity), a true adjustment of ontogenetic trajectories (true plasticity) or both (complex plasticity). Given that the root allocation of annual species usually decreases during the growth, the developmentally explicit model predicts that annual herbs will exhibit true plasticity in root allocation under above-ground resource limitation and apparent plasticity for moderate stress of below-ground resource. For perennial species, the root allocation of which increases during growth, the reverse patterns would be expected. In this study, we tested the developmentally explicit model with a perennial weed, Alternanthera philoxeroides (Mart.) Griseb. We report its adaptive changes and ontogenetic drift of root allocation in response to different resource levels (i.e., light, water and nutrient availability) by comparing root allocation on both an age and a size basis. The root allocation of A. philoxeroides increased with the size (i.e., ontogenetic drift) during the growth, and exhibited significant changes in response to different resource availabilities. Furthermore, the root allocation in response to water or nutrient availability exhibited typical complex plasticity, while the light stress only slowed down the growth, with the ontogenetic trajectory unchanged (apparent plasticity). The contrasting responses to above-ground and below-ground stresses were consistent with the prediction of the developmentally explicit model.  相似文献   

5.
Global change and root function   总被引:7,自引:0,他引:7  
Global change includes land-use change, elevated CO2 concentrations, increased temperature and increased rainfall variability. All four aspects by themselves and in combination will influence the role of roots in linking below- and above-ground ecosystem function via organic and inorganic resource flows. Root-mediated ecosystem functions which may be modified by global change include below-ground resource (water, nutrients) capture, creation and exploitation of spatial heterogeneity, buffering of temporal variations in above-ground factors, supply and storage of C and nutrients to the below-ground ecosystem, mobilization of nutrients and C from stored soil reserves, and gas exchange between soil and atmosphere including the emission from soil of greenhouse gases. The theory of a functional equilibrium between root and shoot allocation is used to explore predicted responses to elevated CO2 in relation to water or nutrient supply as limiting root function. The theory predicts no change in root:shoot allocation where water uptake is the limiting root function, but substantial shifts where nutrient uptake is (or becomes) the limiting function. Root turnover will not likely be influenced by elevated CO2, but by changes in regularity of water supply. A number of possible mechanisms for root-mediated N mineralization is discussed in the light of climate change factors. Rhizovory (root consumption) may increase under global change as the balance between plant chemical defense and adapted root consuming organisms may be modified during biome shifts in response to climate change. Root-mediated gas exchange allows oxygen to penetrate into soils and methane (CH4) to escape from wetland soils of tundra ecosystems as well as tropical rice production systems. The effect on net greenhouse gas emissions of biome shifts (fens replacing bogs) as well as of agricultural land management will depend partly on aerenchyma in roots.  相似文献   

6.
7.
Background and AimsRoot proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition.MethodsNear-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg−1 soil.ResultsBoth WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients.ConclusionsIn addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.  相似文献   

8.
Spatial patterns of ramet population of Iris japonica Thunb. and their effect on species diversity in the herb layer of 3 microsites (open area of forest edge (OAFE), bamboo forest (BF) and evergreen broad-leaved forest (EBF)) on Jinyun Mountain were studied using spatial pattern, niche and diversity analyses in a combination of population and community methods. The results were as follows: (1) judged by V/m and Morisita index (Iδ), ramet population of I. japonica in 3 microsites all clumped from scale 0.5 m × 0.5 m to 2 m × 2 m; (2) the pattern scale and pattern intensity both gradually decreased on all scales, and the density of ramet population of I. japonica decreased with the increase in canopy density and the decrease in relative photon flux density (RPFD) and R/FR from OAFE to EBF. In OAFE and BF, widespread I. japonica had significantly negative influence on the dominance of original dominant species and on species diversity in the herb layer (p < 0.05), while those influences in EBF were extremely weak. The mechanisms that pattern characteristics of ramet population of I. japonica influence herb diversity in 3 microsites were different. In OAFE, strong regeneration niche (above-ground spatial and below-ground root) and trophic niche (nutrient) competition had significantly negative influence on the species diversity of rare herbs and dwarf herbs. In BF, strong regeneration niche (below-ground root) and trophic niche (above-ground for light and below-ground for nutrient) competition had negative effect on the occurrence of rare species and on the survival of other herb species. In EBF, weak niche competition had little effect on the survival of herb species. Intensity of regeneration niche and trophic niche competition between I. japonica and other herb species is the determinant to the mechanism that ramet population of I. japonica influences herb diversity.  相似文献   

9.
To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics.  相似文献   

10.
  1. Previous studies of the N:P ratio in wetland plants have been carried out in northern hemisphere wetlands where atmospheric nitrogen deposition is higher. There is little research on foliar N:P ratio as a potential indicator of nutrient limitation in vegetation communities in southern hemisphere wetlands. This study aimed to redress this knowledge gap and answer the following questions: how well does the plant tissue nitrogen to phosphorus (N:P) ratio predict wetland plant community nutrient limitation, as indicated by vegetation standing stocks and below-ground biomass, in southern hemisphere fens? Secondly, what are the impacts of realistic upper levels of farm nutrient run-off on natural montane fen vegetation?
  2. Low (35 kg ha−1 year−1) and high (70 kg ha−1 year−1) levels of nitrate-N or ammonium-N with and without P (20 kg ha−1 year−1) were added to 81 vegetation plots over a period of 2.75 years. Species composition, plant nutrient status, and above-ground live vegetation standing stocks were assessed after 3 years, and below-ground biomass after 2 years.
  3. Plant tissue analysis suggested the community was N limited or N and P co-limited; we found greater standing stocks of vegetation in plots treated with 70 kg ha−1 year−1 ammonium-N, indicating N limitation. No difference between other treatments was found in above-ground standing stocks or below-ground biomass. Plant species cover increased in both high N treatments, consistent with N limitation. These changes in plant species cover were accompanied by significant decreases in species richness in both high N treatments. Native species dominated the vegetation and this was unaffected by nutrient addition (90% cover).
  4. This is one of the first studies to test and find support for the N:P ratio in southern hemisphere wetlands. Observed declines in species richness after N fertilisation in an N-limited fen suggests increased N may pose risks to austral wetlands. Responses by plant communities (changes in composition, biomass) to lower levels of nutrient addition may require longer periods of fertilisation to be apparent in slow growing ecosystems.
  相似文献   

11.
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.  相似文献   

12.
Abstract

Enriched nutrient patches within natural soil represent an important source of nutrients for tree growth. In the present study, pot experiments in a heterogeneous nutrient environment were conducted to investigate the influence of light conditions and interspecific competition on the root foraging traits and seedling growth of Pinus massoniana and Schima superba. The root foraging scale and the whole-seedling biomass of both species were decreased by shading. The result of this treatment was a lower sensitivity to nutrient heterogeneity in plants that underwent the shading treatment than in plants that were exposed to full-light conditions. The above-ground biomass and whole-seedling biomass of S. superba were not affected by competition with P. massoniana. In contrast, the above-ground biomass and whole-seedling biomass of P. massoniana were negatively affected by competition with S. superba. The more rapid rate of root extension and the more efficient resource uptake of S.superba appear to explain this effect. The species-specific patterns of the influence of environmental factors on foraging ability and seedling growth should be given thorough consideration and should be applied to afforestation and to the management of tree plantations.  相似文献   

13.
Parthenium weed (Parthenium hysterophorus L.) is believed to reduce the above- and below-ground plant species diversity and the above-ground productivity in several ecosystems. We quantified the impact of this invasive weed upon species diversity in an Australian grassland and assessed the resulting shifts in plant community composition following management using two traditional approaches. A baseline plant community survey, prior to management, showed that the above-ground community was dominated by P. hysterophorus, stoloniferous grasses, with a further high frequency of species from Malvaceae, Chenopodiaceae and Amaranthaceae. In heavily invaded areas, P. hysterophorus abundance and biomass was found to negatively correlate with species diversity and native species abundance. Digitaria didactyla Willd. was present in high abundance when P. hysterophorus was not, with these two species, contributing most to the dissimilarity seen between areas. The application of selective broad leaf weed herbicides significantly reduced P. hysterophorus biomass under ungrazed conditions, but this management did not yet result in an increase in species diversity. In the above-ground community, P. hysterophorus was partly replaced by the introduced grass species Cynodon dactylon L. (Pers.) 1 year after management began, increasing the above-ground forage biomass production, while D. didactyla replaced P. hysterophorus in the below-ground community. This improvement in forage availability continued to strengthen over the time of the study resulting in a total increase of 80% after 2 years in the ungrazed treatment, demonstrating the stress that grazing was imposing upon this grassland-based agro-ecosystem and showing that it is necessary to remove grazing to obtain the best results from the chemical management approach.  相似文献   

14.
By forming symbiotic interactions with microbes, many animals and plants gain access to the products of novel metabolic pathways. We investigated the transfer of symbiont-derived carbon and nitrogen to the sponges Aplysina cauliformis, Aplysina fulva, Chondrilla caribensis, Neopetrosia subtriangularis and Xestospongia bocatorensis, all of which host abundant microbial populations, and Niphates erecta, which hosts a sparse symbiont community. We incubated sponges in light and dark bottles containing seawater spiked with 13C- and 15N-enriched inorganic compounds and then measured 13C and 15N enrichment in the microbial (nutrient assimilation) and sponge (nutrient transfer) fractions. Surprisingly, although most sponges hosting abundant microbial communities were more enriched in 13C than N. erecta, only N. subtriangularis was more enriched in 15N than N. erecta. Although photosymbiont abundance varied substantially across species, 13C and 15N enrichment was not significantly correlated with photosymbiont abundance. Enrichment was significantly correlated with the ratio of gross productivity to respiration (P:R), which varied across host species and symbiont phylotype. Because irradiance impacts P:R ratios, we also incubated A. cauliformis in 13C-enriched seawater under different irradiances to determine whether symbiont carbon fixation and transfer are dependent on irradiance. Carbon fixation and transfer to the sponge host occurred in all treatments, but was greatest at higher irradiances and was significantly correlated with P:R ratios. Taken together, these results demonstrate that nutrient transfer from microbial symbionts to host sponges is influenced more by host–symbiont identities and P:R ratios than by symbiont abundance.  相似文献   

15.
The increase in nutrient availability as a consequence of elevated nitrogen (N) deposition is an important component of global environmental change. This is likely to substantially affect the functioning and provisioning of ecosystem services by drylands, where water and N are often limited. We tested mechanisms of chronic N-enrichment-induced plant species loss in a 10-year field experiment with six levels of N addition rate. Our findings on a semi-arid grassland in Inner Mongolia demonstrated that: (i) species richness (SR) declined by 16 per cent even at low levels of additional N (1.75 g N m–2 yr−1), and 50–70% species were excluded from plots which received high N input (10.5–28 g N m−2 yr−1); (ii) the responses of SR and above-ground biomass (AGB) to N were greater in wet years than dry years; (iii) N addition increased the inter-annual variations in AGB, reduced the drought resistance of production and hence diminished ecosystem stability; (iv) the critical threshold for chronic N-enrichment-induced reduction in SR differed between common and rare species, and increased over the time of the experiment owing to the loss of the more sensitive species. These results clearly indicate that both abundance and functional trait-based mechanisms operate simultaneously on N-induced species loss. The low initial abundance and low above-ground competitive ability may be attributable to the loss of rare species. However, shift from below-ground competition to above-ground competition and recruitment limitation are likely to be the key mechanisms for the loss of abundant species, with soil acidification being less important. Our results have important implications for understanding the impacts of N deposition and global climatic change (e.g. change in precipitation regimes) on biodiversity and ecosystem services of the Inner Mongolian grassland and beyond.  相似文献   

16.
  • Functional traits respond to environmental drivers, hence evaluating trait‐environment relationships across spatial environmental gradients can help to understand how multiple drivers influence plant communities. Global‐change drivers such as changes in atmospheric nitrogen deposition occur worldwide, but affect community trait distributions at the local scale, where resources (e.g. light availability) and conditions (e.g. soil pH) also influence plant communities.
  • We investigate how multiple environmental drivers affect community trait responses related to resource acquisition (plant height, specific leaf area (SLA), woodiness, and mycorrhizal status) and regeneration (seed mass, lateral spread) of European temperate deciduous forest understoreys. We sampled understorey communities and derived trait responses across spatial gradients of global‐change drivers (temperature, precipitation, nitrogen deposition, and past land use), while integrating in‐situ plot measurements on resources and conditions (soil type, Olsen phosphorus (P), Ellenberg soil moisture, light, litter mass, and litter quality).
  • Among the global‐change drivers, mean annual temperature strongly influenced traits related to resource acquisition. Higher temperatures were associated with taller understoreys producing leaves with lower SLA, and a higher proportional cover of woody and obligate mycorrhizal (OM) species. Communities in plots with higher Ellenberg soil moisture content had smaller seeds and lower proportional cover of woody and OM species. Finally, plots with thicker litter layers hosted taller understoreys with larger seeds and a higher proportional cover of OM species.
  • Our findings suggest potential community shifts in temperate forest understoreys with global warming, and highlight the importance of local resources and conditions as well as global‐change drivers for community trait variation.
  相似文献   

17.
Resource competition theory suggests that the nature of diversity–resource–invasibility interactions will vary along fertility gradients, concurrent with changes in the relative availability of limiting above- versus below-ground resources. Experimental support for this contingency is lacking. Here, we manipulated resident diversity, baseline fertility, and the availabilities of light and soil nitrogen in grassland communities invaded by two functionally distinct non-native plant species (Lolium arundinaceum and Melilotus alba). We tested the hypotheses that increased resident diversity reduces community invasibility and dampens the effects of light and soil nitrogen pulses, and that the relative effects of light versus soil nitrogen additions on diversity–invasibility relationships depend on the baseline fertility of the study system. Our results reveal an overall weak negative effect of resident diversity on Lolium performance, but in contrast to our expectations, this diversity effect did not vary with light or soil nitrogen additions or with baseline fertility. However, the relative effects of above- versus below-ground resource additions on invader performance varied with baseline fertility as expected: Lolium responded most strongly to soil nitrogen additions in low-fertility mesocosms and most strongly to increased light availability in high-fertility mesocosms. In contrast to Lolium, nitrogen-fixing Melilotus was overall less responsive to diversity and resource manipulations. Together, these patterns do not lend support for the dependence of diversity–resource–invasibility relationships on either baseline fertility or invasive species identity, but they do highlight the dominant role of resources over diversity in determining invader performance, as well as the manner in which fertility alters the relative importance of above- versus below-ground resource pulses in promoting invasions.  相似文献   

18.
Alpine plant species have been shown to exhibit a more pronounced increase in leaf photosynthesis under elevated CO2 than lowland plants. In order to test whether this higher carbon fixation efficiency will translate into increased biomass production under CO2 enrichment we exposed plots of narrow alpine grassland (Swiss Central Alps, 2470 m) to ambient (355 μl l-1) and elevated (680 μl l-1) CO2 concentration using open top chambers. Part of the plost received moderate mineral nutrient additions (40 kg ha-1 year-1 of nitrogen in a complete fertilizer mix). Under natural nutrient supply CO2 enrichment had no effect on biomass production per unit land area during any of the three seasons studied so far. Correspondingly, the dominant species Carex curvula and Leontodon helveticus as well as Trifolium alpinum did not show a growth response either at the population level or at the shoot level. However, the subdominant generalistic species Poa alpina strongly increased shoot growth (+47%). Annual root production (in ingrowth cores) was significantly enhanced in C. curvula in the 2nd and 3rd year of investigation (+43%) but was not altered in the bulk samples for all species. Fertilizer addition generally stimulated above-ground (+48%) and below-ground (+26%) biomass production right from the beginning. Annual variations in weather conditions during summer also strongly influenced above-ground biomass production (19–27% more biomass in warm seasons compared to cool seasons). However, neither nutrient availability nor climate had a significant effect on the CO2 response of the plants. Our results do not support the hypothesis that alpine plants, due to their higher carbon uptake efficiency, will increase biomass production under future atmospheric CO2 enrichment, at least not in such late successional communities. However, as indicated by the response of P. alpina, species-specific responses occur which may lead to altered community structure and perhaps ecosystem functioning in the long-term. Our findings further suggest that possible climatic changes are likely to have a greater impact on plant growth in alpine environments than the direct stimulation of photosynthesis by CO2. Counter-intuitively, our results suggest that even under moderate climate warming or enhanced atmospheric nitrogen deposition positive biomass responses to CO2 enrichment of the currently dominating species are unlikely.  相似文献   

19.
Anthropogenic fires and land-use change, including the conversion from native to exotic species canopies, are two major types of disturbances that strongly affect the functioning of forest ecosystems around the world. These disturbances alter the resource availability for plants, which may lead to changes in species richness. Here we examined the relative effects of canopy cover type, light availability and soil nutrient (N and P) availability on species richness, including invasive species, at different post-fire plant systems. Additionally, we tested the resource heterogeneity hypothesis (RHH) for plant diversity, which proposes that diversity is higher in habitats with spatially heterogeneous resources. We evaluated four different canopy cover types, including mature and second-growth Nothofagus pumilio forests, treeless prairie, Pinus sylvestris afforestations, all of which were converted from mature N. pumilio forests. Using generalized mixed-effects model correlations, we determined (1) the relative influence of canopy cover type, light and soil nutrient availability on understory species richness and (2) the relationship between species richness and resource heterogeneity. We found that canopy cover type was the factor that best explained species richness, much more than fine-scale light and soil nutrient availability. Additionally, we found that the more homogeneous the light environment the higher the number of exotic species (mainly found in the prairie where the highest light intensity occurred), which is contrary to what the RHH states. In conclusion, canopy cover type, a stand-scale driver, and not fine-scale resource (light, N and P) availability, was most important for explaining native and exotic (including invasive) species understory richness in a landscape affected by anthropogenic fires and posterior land-use change.  相似文献   

20.
Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually) on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species'' ability to persist in a nutrient-enriched boreal forest understory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号