首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human β-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca2+-activated ADP release rates involving the thin filament human β-cardiac myosin complex. Changes in Ca2+ sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca2+ induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human β-cardiac myosin.  相似文献   

2.
The molecular regulation of striated muscle contraction couples the binding and dissociation of Ca2+ on troponin (Tn) to the movement of tropomyosin on actin filaments. In turn, this process exposes or blocks myosin binding sites on actin, thereby controlling myosin crossbridge dynamics and consequently muscle contraction. Using 3D electron microscopy, we recently provided structural evidence that a C-terminal extension of TnI is anchored on actin at low Ca2+ and competes with tropomyosin for a common site to drive tropomyosin to the B-state location, a constrained, relaxing position on actin that inhibits myosin-crossbridge association. Here, we show that release of this constraint at high Ca2+ allows a second segment of troponin, probably representing parts of TnT or the troponin core domain, to promote tropomyosin movement on actin to the Ca2+-induced C-state location. With tropomyosin stabilized in this position, myosin binding interactions can begin. Tropomyosin appears to oscillate to a higher degree between respective B- and C-state positions on troponin-free filaments than on fully regulated filaments, suggesting that tropomyosin positioning in both states is troponin-dependent. By biasing tropomyosin to either of these two positions, troponin appears to have two distinct structural functions; in relaxed muscles at low Ca2+, troponin operates as an inhibitor, while in activated muscles at high Ca2+, it acts as a promoter to initiate contraction.  相似文献   

3.
In striated muscle, regulation of actin-myosin interactions depends on a series of conformational changes within the thin filament that result in a shifting of the tropomyosin-troponin complex between distinct locations on actin. The major factors activating the filament are Ca2+ and strongly bound myosin heads. Many lines of evidence also point to an active role of actin in the regulation. Involvement of the actin C-terminus in binding of tropomyosin-troponin in different activation states and the regulation of actin-myosin interactions were examined using actin modified by proteolytic removal of three C-terminal amino acids. Actin C-terminal modification has no effect on the binding of tropomyosin or tropomyosin-troponin + Ca2+, but it reduces tropomyosin-troponin affinity in the absence of Ca2+. In contrast, myosin S1 induces binding of tropomyosin to truncated actin more readily than to native actin. The rate of actin-activated myosin S1 ATPase activity is reduced by actin truncation both in the absence and presence of tropomyosin. The Ca2+-dependent regulation of the ATPase activity is preserved. Without Ca2+ the ATPase activity is fully inhibited, but in the presence of Ca2+ the activation does not reach the level observed for native actin. The results suggest that through long-range allosteric interactions the actin C-terminus participates in the thin filament regulation.  相似文献   

4.
Recently, our understanding of the structural basis of troponin-tropomyosin’s Ca2+-triggered regulation of striated muscle contraction has advanced greatly, particularly via cryo-electron microscopy data. Compelling atomic models of troponin-tropomyosin-actin were published for both apo- and Ca2+-saturated states of the cardiac thin filament. Subsequent electron microscopy and computational analyses have supported and further elaborated the findings. Per cryo-electron microscopy, each troponin is highly extended and contacts both tropomyosin strands, which lie on opposite sides of the actin filament. In the apo-state characteristic of relaxed muscle, troponin and tropomyosin hinder strong myosin-actin binding in several different ways, apparently barricading the actin more substantially than does tropomyosin alone. The troponin core domain, the C-terminal third of TnI, and tropomyosin under the influence of a 64-residue helix of TnT located at the overlap of adjacent tropomyosins are all in positions that would hinder strong myosin binding to actin. In the Ca2+-saturated state, the TnI C-terminus dissociates from actin and binds in part to TnC; the core domain pivots significantly; the N-lobe of TnC binds specifically to actin and tropomyosin; and tropomyosin rotates partially away from myosin’s binding site on actin. At the overlap domain, Ca2+ causes much less tropomyosin movement, so a more inhibitory orientation persists. In the myosin-saturated state of the thin filament, there is a large additional shift in tropomyosin, with molecular interactions now identified between tropomyosin and both actin and myosin. A new era has arrived for investigation of the thin filament and for functional understandings that increasingly accommodate the recent structural results.  相似文献   

5.
Tropomyosin movements on thin filaments are thought to sterically regulate muscle contraction, but have not been visualized during active filament sliding. In addition, although 3-D visualization of myosin crossbridges has been possible in rigor, it has been difficult for thick filaments actively interacting with thin filaments. In the current study, using three-dimensional reconstruction of electron micrographs of interacting filaments, we have been able to resolve not only tropomyosin, but also the docking sites for weak and strongly bound crossbridges on thin filaments. In relaxing conditions, tropomyosin was observed on the outer domain of actin, and thin filament interactions with thick filaments were rare. In contracting conditions, tropomyosin had moved to the inner domain of actin, and extra density, reflecting weakly bound, cycling myosin heads, was also detected, on the extreme periphery of actin. In rigor conditions, tropomyosin had moved further on to the inner domain of actin, and strongly bound myosin heads were now observed over the junction of the inner and outer domains. We conclude (1) that tropomyosin movements consistent with the steric model of muscle contraction occur in interacting thick and thin filaments, (2) that myosin-induced movement of tropomyosin in activated filaments requires strongly bound crossbridges, and (3) that crossbridges are bound to the periphery of actin, at a site distinct from the strong myosin binding site, at an early stage of the crossbridge cycle.  相似文献   

6.
Interaction of myosin with actin in striated muscle is controlled by Ca2+ via thin filament associated proteins: troponin and tropomyosin. In cardiac muscle there is a whole pattern of myosin and tropomyosin isoforms. The aim of the current work is to study regulatory effect of tropomyosin on sliding velocity of actin filaments in the in vitro motility assay over cardiac isomyosins. It was found that tropomyosins of different content of α- and β-chains being added to actin filament effects the sliding velocity of filaments in different ways. On the other hand the velocity of filaments with the same tropomyosins depends on both heavy and light chains isoforms of cardiac myosin.  相似文献   

7.
Reversible Ca2+ binding to troponin is the primary on-off switch of the contractile apparatus of striated muscles, including the heart. Dominant missense mutations in human cardiac troponin genes are among the causes of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy. Structural understanding of troponin action has recently advanced considerably via electron microscopy and molecular dynamics studies of the thin filament. As a result, it is now possible to examine cardiomyopathy-inducing troponin mutations in thin-filament structural context, and from that to seek new insight into pathogenesis and into the troponin regulatory mechanism. We compiled from consortium reports a representative set of troponin mutation sites whose pathogenicity was determined using standardized clinical genetics criteria. Another set of sites, apparently tolerant of amino acid substitutions, was compiled from the gnomAD v2 database. Pathogenic substitutions occurred predominantly in the areas of troponin that contact actin or tropomyosin, including, but not limited to, two regions of newly proposed structure and long-known implication in cardiomyopathy: the C-terminal third of troponin I and a part of the troponin T N terminus. The pathogenic mutations were located in troponin regions that prevent contraction under low Ca2+ concentration conditions. These regions contribute to Ca2+-regulated steric hindrance of myosin by the combined effects of troponin and tropomyosin. Loss-of-function mutations within these parts of troponin result in loss of inhibition, consistent with the hypercontractile phenotype characteristic of HCM. Notably, pathogenic mutations are absent in our dataset from the Ca2+-binding, activation-producing troponin C (TnC) N-lobe, which controls contraction by a multi-faceted mechanism. Apparently benign mutations are also diminished in the TnC N-lobe, suggesting mutations are poorly tolerated in that critical domain.  相似文献   

8.
Mavacamten (MYK-461) is a small-molecule allosteric inhibitor of sarcomeric myosins being used in preclinical/clinical trials for hypertrophic cardiomyopathy treatment. A better understanding of its impact on force generation in intact or skinned striated muscle preparations, especially for human cardiac muscle, has been hindered by diffusional barriers. These limitations have been overcome by mechanical experiments using myofibrils subject to perturbations of the contractile environment by sudden solution changes. Here, we characterize the action of mavacamten in human ventricular myofibrils compared with fast skeletal myofibrils from rabbit psoas. Mavacamten had a fast, fully reversible, and dose-dependent negative effect on maximal Ca2+-activated isometric force at 15°C, which can be explained by a sudden decrease in the number of heads functionally available for interaction with actin. It also decreased the kinetics of force development in fast skeletal myofibrils, while it had no effect in human ventricular myofibrils. For both myofibril types, the effects of mavacamten were independent from phosphate in the low-concentration range. Mavacamten did not alter force relaxation of fast skeletal myofibrils, but it significantly accelerated the relaxation of human ventricular myofibrils. Lastly, mavacamten had no effect on resting tension but inhibited the ADP-stimulated force in the absence of Ca2+. Altogether, these effects outline a motor isoform–specific dependence of the inhibitory effect of mavacamten on force generation, which is mediated by a reduction in the availability of strongly actin-binding heads. Mavacamten may thus alter the interplay between thick and thin filament regulation mechanisms of contraction in association with the widely documented drug effect of stabilizing myosin motor heads into autoinhibited states.  相似文献   

9.
Mutations in cardiac myosin binding protein C (cMyBP-C) are prevalent causes of hypertrophic cardiomyopathy (HCM). Although HCM-causing truncation mutations in cMyBP-C are well studied, the growing number of disease-related cMyBP-C missense mutations remain poorly understood. Our objective was to define the primary contractile effect and molecular disease mechanisms of the prevalent cMyBP-C E258K HCM-causing mutation in nonremodeled murine engineered cardiac tissue (mECT). Wild-type and human E258K cMyBP-C were expressed in mECT lacking endogenous mouse cMyBP-C through adenoviral-mediated gene transfer. Expression of E258K cMyBP-C did not affect cardiac cell survival and was appropriately incorporated into the cardiac sarcomere. Functionally, expression of E258K cMyBP-C caused accelerated contractile kinetics and severely compromised twitch force amplitude in mECT. Yeast two-hybrid analysis revealed that E258K cMyBP-C abolished interaction between the N terminal of cMyBP-C and myosin heavy chain sub-fragment 2 (S2). Furthermore, this mutation increased the affinity between the N terminal of cMyBP-C and actin. Assessment of phosphorylation of three serine residues in cMyBP-C showed that aberrant phosphorylation of cMyBP-C is unlikely to be responsible for altering these interactions. We show that the E258K mutation in cMyBP-C abolishes interaction between N-terminal cMyBP-C and myosin S2 by directly disrupting the cMyBP-C–S2 interface, independent of cMyBP-C phosphorylation. Similar to cMyBP-C ablation or phosphorylation, abolition of this inhibitory interaction accelerates contractile kinetics. Additionally, the E258K mutation impaired force production of mECT, which suggests that in addition to the loss of physiological function, this mutation disrupts contractility possibly by tethering the thick and thin filament or acting as an internal load.  相似文献   

10.
Paired sedimentation studies of isolated, native thick filaments at pH 6.8, I = 0.12 and in the presence of 0.3 mm-free Mg2+ show that the sedimentation coefficient increases with Ca2+ concentration (pCa2 midpoint = 5.5), leveling off at pCa 4.7. The addition of ATP or ADP (5 mm) has no effect on the hydrodynamic changes induced by Ca2+. At much higher free Mg2+ concentrations (5 mm), the midpoint of the transition is shifted to pCa = 5.3. Viscosity measurements of the filament system under comparable conditions reveal a decrease in the relative viscosity over the same range of Ca2+ concentration. Synthetic filaments prepared from purified myosin free of C-protein also show the same behavior. Native filaments from which myosin heads have been removed by treatment with papain do not show Ca2+ dependence. The dependence of the sedimentation coefficient of filament on protein concentration, as measured by differential sedimentation, is unaffected by Ca2+, indicating that the changes in hydrodynamic properties are probably not related to aggregation of the filaments. The Ca2+ effects are reversible and are not observed on replacing Ca2+ by Mg2+. Binding studies carried out at low ionic strength reveal two binding sites for Ca2+ (Ka = 1.7 × 105m?1) per mole myosin within the filament and evidence is presented showing that the DTNB light chain is the site of binding. The combined results are interpreted as indicating that thick filaments of vertebrate muscle undergo conformational changes at physiological levels of Ca2+ and provide evidence for a Ca2+-sensitive regulatory mechanism at the level of the thick filament.  相似文献   

11.
Hypertrophic cardiomyopathy (HCM) caused by mutations in cardiac myosin–binding protein-C (cMyBP-C) is a heterogenous disease in which the phenotypic presentation is influenced by genetic, environmental, and developmental factors. Though mouse models have been used extensively to study the contractile effects of cMyBP-C ablation, early postnatal hypertrophic and dilatory remodeling may overshadow primary contractile defects. The use of a murine engineered cardiac tissue (mECT) model of cMyBP-C ablation in the present study permits delineation of the primary contractile kinetic abnormalities in an intact tissue model under mechanical loading conditions in the absence of confounding remodeling events. We generated mechanically integrated mECT using isolated postnatal day 1 mouse cardiac cells from both wild-type (WT) and cMyBP-C–null hearts. After culturing for 1 wk to establish coordinated spontaneous contraction, we measured twitch force and Ca2+ transients at 37°C during pacing at 6 and 9 Hz, with and without dobutamine. Compared with WT, the cMyBP-C–null mECT demonstrated faster late contraction kinetics and significantly faster early relaxation kinetics with no difference in Ca2+ transient kinetics. Strikingly, the ability of cMyBP-C–null mECT to increase contractile kinetics in response to adrenergic stimulation and increased pacing frequency were severely impaired. We conclude that cMyBP-C ablation results in constitutively accelerated contractile kinetics with preserved peak force with minimal contractile kinetic reserve. These functional abnormalities precede the development of the hypertrophic phenotype and do not result from alterations in Ca2+ transient kinetics, suggesting that alterations in contractile velocity may serve as the primary functional trigger for the development of hypertrophy in this model of HCM. Our findings strongly support a mechanism in which cMyBP-C functions as a physiological brake on contraction by positioning myosin heads away from the thin filament, a constraint which is removed upon adrenergic stimulation or cMyBP-C ablation.  相似文献   

12.
Ali LF  Cohen JM  Tobacman LS 《Biochemistry》2010,49(51):10873-10880
Tropomyosin is a ubiquitous actin-binding protein with an extended coiled-coil structure. Tropomyosin-actin interactions are weak and loosely specific, but they potently influence myosin. One such influence is inhibitory and is due to tropomyosin's statistically preferred positions on actin that sterically interfere with actin's strong attachment site for myosin. Contrastingly, tropomyosin's other influence is activating. It increases myosin's overall actin affinity ~4-fold. Stoichiometric considerations cause this activating effect to equate to an ~4(7)-fold effect of myosin on the actin affinity of tropomyosin. These positive, mutual, myosin-tropomyosin effects are absent if Saccharomyces cerevisiae tropomyosin replaces mammalian tropomyosin. To investigate these phenomena, chimeric tropomyosins were generated in which 38-residue muscle tropomyosin segments replaced a natural duplication within S. cerevisiae tropomyosin TPM1. Two such chimeric tropomyosins were sufficiently folded coiled coils to allow functional study. The two chimeras differed from TPM1 but in opposite ways. Consistent with steric interference, myosin greatly decreased the actin affinity of chimera 7, which contained muscle tropomyosin residues 228-265. On the other hand, myosin S1 increased by an order of magnitude the actin affinity of chimera 3, which contained muscle tropomyosin residues 74-111. Similarly, myosin S1-ADP binding to actin was strengthened 2-fold by substitution of chimera 3 tropomyosin for wild-type TPM1. Thus, a yeast tropomyosin was induced to mimic the activating behavior of mammalian tropomyosin by inserting a mammalian tropomyosin sequence. The data were not consistent with direct tropomyosin-myosin binding. Rather, they suggest an allosteric mechanism, in which myosin and tropomyosin share an effect on the actin filament.  相似文献   

13.
Cardiac muscle contraction depends on interactions between thick (myosin) and thin (actin) filaments (TFs). TFs are regulated by intracellular Ca2+ levels. Under activating conditions Ca2+ binds to the troponin complex and displaces tropomyosin from myosin binding sites on the TF surface to allow actomyosin interactions. Recent studies have shown that in addition to Ca2+, the first four N-terminal domains (NTDs) of cardiac myosin binding protein C (cMyBP-C) (e.g. C0, C1, M and C2), are potent modulators of the TF activity, but the mechanism of their collective action is poorly understood. Previously, we showed that C1 activates the TF at low Ca2+ and C0 stabilizes binding of C1 to the TF, but the ability of C2 to bind and/or affect the TF remains unknown. Here we obtained 7.5 Å resolution cryo-EM reconstruction of C2-decorated actin filaments to demonstrate that C2 binds to actin in a single structural mode that does not activate the TF unlike the polymorphic binding of C0 and C1 to actin. Comparison of amino acid sequences of C2 with either C0 or C1 shows low levels of identity between the residues involved in interactions with the TF but high levels of conservation for residues involved in Ig fold stabilization. This provides a structural basis for strikingly different interactions of structurally homologous C0, C1 and C2 with the TF. Our detailed analysis of the interaction of C2 with the actin filament provides crucial information required to model the collective action of cMyBP-C NTDs on the cardiac TF.  相似文献   

14.
Using the intensity of the outer part of the second actin layer line as an indicator of thin filament conformation in vertebrate muscle we were able to identify the four different states of rest, and the three states induced by the presence of Ca2+ ions, rigor bridge attachment and actively cycling bridges, respectively. These findings are in qualitative agreement with a number of biochemical studies by Eisenberg and Greene and others, indicating that activation of the thin filament depends both on Ca2+ ions and crossbridge binding. Yet quantitatively, the biochemical data and our structural data are contradictory. Whereas the biochemical studies suggest a strong coupling between structural changes of the thin filament and the ATPase activity, the structural studies indicate that this is not necessarily the case.Troponin molecules also change their conformation upon activation depending on both Ca2+ ions and crossbridge binding as demonstrated by the early part of the time course of the thin filament meridional reflections in contracting frog muscle.Low ionic strength which has been shown by Brenner and collaborators to increase weakly binding crossbridges in relaxed rabbit psoas muscle does not influence the intensity of the second actin layer line in this muscle. Yet in contracting frog muscle the increase of the second actin layer line increases very rapidly in one step, suggesting that weak binding bridges which are attached to actin prior to force production may indeed influence the thin filament conformation. It therefore appears that weakly bound bridges in the low ionic strength state do not have the same effect on the thin filament conformation as weakly bound bridges in an actively contracting muscle.Arthropod muscles like the thin filament regulated lobster muscles differ from vertebrate muscle in not showing an increase of the second layer line during contraction, which may have to do with differences in crossbridge attachment. The myosin-regulated molluscan muscle ABRM shows a large increase on the second actin layer line upon phasic contraction and a much smaller increase in catch or rigor, indicating that actively cycling bridges influence the thin filament conformation differently than catch or rigor bridges.Several pieces of evidence which we have briefly outlined in this paper suggest that the thin filament conformational changes we have observed do not arise solely from tropomyosin movements and that conformational changes of actin domains should be considered.  相似文献   

15.
甲壳动物横纹肌肌原纤维的肌丝陈列,收缩蛋白质和收缩的Ca2+依赖性调节机制与脊椎动物横纹肌有不少差异.脊椎动物横纹肌、甲壳动物快肌与慢肌的粗丝与细丝的数量比依次为1:2,1:3和1:6,肌丝阵列各异.甲壳动物粗肌丝由肌球蛋白和副肌球蛋白组成,其分子装配与脊椎动物不同.细肌丝含有肌动蛋白、原肌球蛋白和肌钙蛋白,肌钙蛋白-T分子量较高,肌钙蛋白-C仅1个Ca2+结合位点.甲壳动物横纹肌兼有细肌丝调节与粗肌丝调节.  相似文献   

16.
The regulation of vertebrate striated muscle contraction involves a number of different molecules, including the thin-filament accessory proteins tropomyosin and troponin that provide Ca2+-dependent regulation by controlling access to myosin binding sites on actin. Cardiac myosin binding protein C (cMyBP-C) appears to modulate this Ca2+-dependent regulation and has attracted increasing interest due to links with inherited cardiac diseases. A number of single amino acid mutations linked to clinical diseases occur in the N-terminal region of cMyBP-C, including domains C0 and C1, which previously have been shown to bind to F-actin. This N-terminal region also has been shown to both inhibit and activate actomyosin interactions in vitro. Using electron microscopy and three-dimensional reconstruction, we show that C0 and C1 can each bind to the same two distinctly different positions on F-actin. One position aligns well with the previously reported binding site that clashes with the binding of myosin to actin, but would force tropomyosin into an “on” position that exposes myosin binding sites along the filament. The second position identified here would not interfere with either myosin binding or tropomyosin positioning. It thus appears that the ability to bind to at least two distinctly different positions on F-actin, as observed for tropomyosin, may be more common than previously considered for other actin binding proteins. These observations help to explain many of the seemingly contradictory results obtained with cMyBP-C and show how cMyBP-C can provide an additional layer of regulation to actin-myosin interactions. They also suggest a redundancy of C0 and C1 that may explain the absence of C0 in skeletal muscle.  相似文献   

17.
The interaction between myosin and actin in striated muscle tissue is regulated by Ca2+ via thin filament regulatory proteins. Skeletal muscle possesses a whole pattern of myosin and tropomyosin isoforms. The regulatory effect of tropomyosin on actin-myosin interaction was investigated by measuring the sliding velocity of both actin and actin-tropomyosin filaments over fast and slow skeletal myosins using the in vitro motility assay. The actin-tropomyosin filaments were reconstructed with tropomyosin isoforms from striated muscle tissue. It was found that tropomyosins with different content of α-, β-, and γ-chains added to actin filaments affect the sliding velocity of filaments in different ways. On the other hand, the sliding velocity of filaments with the same content of α-, β-, and Γ-chains depends on myosin isoforms of striated muscle. The reciprocal effects of myosin and tropomyosin on actin-myosin interaction in striated muscle may play a significant role in maintenance of effective work of striated muscle both during ontogenesis and under pathological conditions.  相似文献   

18.
Small-angle X-ray scattering experiments were carried out to investigate the structural changes of cardiac thin filaments induced by the cardiomyopathy-causing E244D mutation in troponin T (TnT). We examined native thin filaments (NTF) from a bovine heart, reconstituted thin filaments containing human cardiac wild-type Tn (WTF), and filaments containing the E244D mutant of Tn (DTF), in the absence and presence of Ca2+. Analysis by model calculation showed that upon Ca2+-activation, tropomyosin (Tm) and Tn in the WTF and NTF moved together in a direction to expose myosin-binding sites on actin. On the other hand, Tm and Tn of the DTF moved in the opposite directions to each other upon Ca2+-activation. These movements caused Tm to expose more myosin-binding sites on actin than the WTF, suggesting that the affinity of myosin for actin is higher for the DTF. Thus, the mutation-induced structural changes in thin filaments would increase the number of myosin molecules bound to actin compared with the WTF, resulting in the force enhancement observed for the E244D mutation.  相似文献   

19.
Cryoelectron microscopy studies have identified distinct locations of tropomyosin (Tm) within the Ca2+-free, Ca2+-saturated, and myosin-S1-saturated states of the thin filament. On the other hand, steady-state Förster resonance energy transfer (FRET) studies using functional, reconstituted thin filaments under physiological conditions of temperature and solvent have failed to detect any movement of Tm upon Ca2+ binding. In this investigation, an optimized system for FRET and anisotropy analyses of cardiac tropomyosin (cTm) dynamics was developed that employed a single tethered donor probe within a Tm dimer. Multisite FRET and fluorescence anisotropy analyses showed that S1 binding to Ca2+ thin filaments triggered a uniform displacement of cTm toward F-actin but that Ca2+ binding alone did not change FRET efficiency, most likely due to thermally driven fluctuations of cTm on the thin filament that decreased the effective separation of the donor probe between the blocked and closed states. Although Ca2+ binding to the thin filament did not significantly change FRET efficiency, such a change was demonstrated when the thin filament was partially saturated with S1. FRET was also used to show that stoichiometric binding of S1 to Ca2+-activated thin filaments decreased the amplitude of Tm fluctuations and revealed a strong correlation between the cooperative binding of S1 to the closed state and the movement of cTm.  相似文献   

20.
Wild type chicken gizzard caldesmon (756 amino acids) was expressed in a T7 RNA polymerase-based bacterial expression system at a yield of 1 mg pure caldesmon per litre bacterial culture. A mutant composed of amino acids 1-578 was also constructed and expressed. The wild type and mutant caldesmon were purified and compared with native chicken gizzard caldesmon. Native and wild type expressed caldesmon were indistinguishable in assays for inhibition of actin-tropomyosin activation of myosin ATPase, reversal of inhibition by Ca2+-calmodulin and binding to actin, actin-tropomyosin, Ca2+-calmodulin, tropomyosin and myosin. The mutant missing the C-terminal 178 amino acids had no inhibitory effect and did not bind to actin or Ca2+-calmodulin. It bound to tropomyosin with a 5-fold reduced affinity and to myosin with a greater than 10-fold reduced affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号