首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor virus, encodes two homologous membrane-associated E3 ubiquitin ligases, modulator of immune recognition 1 (MIR1) and MIR2, to evade host immunity. Both MIR1 and MIR2 downregulate the surface expression of major histocompatibility complex class I (MHC I) molecules through ubiquitin-mediated endocytosis followed by lysosomal degradation. Since MIR2 additionally downregulates a costimulatory molecule (B7-2) and an integrin ligand (intercellular adhesion molecule 1 [ICAM-1]), MIR2 is thought to be a more important molecule for immune evasion than MIR1; however, the molecular basis of the MIR2 substrate specificity remains unclear. To address this issue, we determined which regions of B7-2 and MIR2 are required for MIR2-mediated B7-2 downregulation. Experiments with chimeras made by swapping domains between human B7-2 and CD8α, a non-MIR2 substrate, and between MIR1 and MIR2 demonstrated a significant contribution of the juxtamembrane (JM) region of B7-2 and the intertransmembrane (ITM) region of MIR2 to MIR2-mediated downregulation. Structure prediction and mutagenesis analyses indicate that Phe119 and Ser120 in the MIR2 ITM region and Asp244 in the B7-2 JM region contribute to the recognition of B7-2 by MIR2. This finding provides new insight into the molecular basis of substrate recognition by MIR family members.  相似文献   

2.
Dendritic cells (DCs) require costimulatory molecules such as CD86 to efficiently activate T cells for the induction of adaptive immunity. DCs maintain minimal levels of CD86 expression at rest, but upregulate levels upon LPS stimulation. LPS-stimulated DCs produce the immune suppressive cytokine IL-10 that acts in an autocrine manner to regulate CD86 levels. Interestingly, the underlying molecular mechanism behind the tight control of CD86 is not completely understood. In this study, we report that CD86 is ubiquitinated in DCs via MARCH1 E3 ubiquitin ligase and that this ubiquitination plays a key role in CD86 regulation. Ubiquitination at lysine 267 played the most critical role for this regulation. CD86 is ubiquitinated in MARCH1-deficient DCs to a much lesser degree than in wild-type DCs, which also correlated with a significant increase in CD86 expression. Importantly, CD86 is continuously ubiquitinated in DCs following activation by LPS, and this was due to the autocrine IL-10 inhibition of MARCH1 downregulation. Accordingly, DCs lacking MARCH1 and DCs expressing ubiquitination-resistant mutant CD86 both failed to regulate CD86 in response to autocrine IL-10. DCs expressing ubiquitination-resistant mutant CD86 failed to control their T cell-activating abilities at rest as well as in response to autocrine IL-10. These studies suggest that ubiquitination serves as an important mechanism by which DCs control CD86 expression and regulate their Ag-presenting functions.  相似文献   

3.
A novel family of membrane-bound E3 ubiquitin ligases   总被引:1,自引:0,他引:1  
A novel E3 ubiquitin ligase family that consists of viral E3 ubiquitin ligases (E3s) and their mammalian homologues was recently discovered. These novel E3s are membrane-bound molecules that share the secondary structure and catalytic domain for E3 activity. All family members have two transmembrane regions at the center and a RING-CH domain at the amino terminus. Forced expression of these novel E3s has been shown to reduce the surface expression of various membrane proteins through ubiquitination of target molecules. Initial examples of viral E3s were identified in Kaposi's sarcoma associated herpesvirus (KSHV) and murine gamma-herpesvirus 68 (MHV-68) and have been designated as modulator of immune recognition (MIR) 1, 2 and mK3, respectively. MIR 1, 2 and mK3 are able to down-regulate MHC class I molecule expression, and mK3 is required to establish an effective latent viral infection in vivo. The first characterized mammalian homologue to MIR 1, 2 and mK3 is c-MIR/MARCH VIII. Forced expression of c-MIR/MARCH VIII down-regulates B7-2, a co-stimulatory molecule important for antigen presentation. Subsequently, several mammalian molecules related to c-MIR/MARCH VIII have been characterized and named as membrane associated RING-CH (MARCH) family. However, the precise physiological function of MARCH family members remains as yet unknown.  相似文献   

4.
5.
Kaposi's sarcoma-associated herpesvirus encodes two related proteins, MIR1 and MIR2, that lead to reduction of the cell surface levels of major histocompatibility complex class I and other polypeptides involved in immune recognition. MIR1 and MIR2 do not affect the assembly or transport of their target proteins through the secretory pathway; rather, they act to enhance the selective endocytosis of target chains from the cell surface. Sequence inspection reveals that the modulator of immune recognition (MIR) proteins contain an NH(2)-terminal zinc finger of the plant homeodomain (PHD) subfamily, two transmembrane (TM) domains, and a C-terminal conserved region (CR). Here we examine the transmembrane topology and functional organization of MIR2. Both the PHD domain and the CR are disposed cytosolically and are essential for MIR-mediated endocytosis. MIR proteins form homo-oligomers; this activity is independent of the PHD and CR elements and maps instead to the TM regions. Analysis of chimeras between MIR1 and MIR2 reveals that the TM regions also mediate target selectivity. Mutations that ablate the PHD or CR regions generate dominant negative phenotypes for major histocompatibility complex class I endocytosis. These findings suggest a domain organization for the MIR proteins, with the TM regions involved in target selection and the cytosolic PHD and CR domains involved in the possible recruitment of cellular machinery that directly or indirectly regulates internalization of target molecules.  相似文献   

6.
Pancreatic islet endothelial cells (ECs) form the barrier across which autoreactive T cells transmigrate during the development of islet inflammation in type 1 diabetes. Little is known about the immune phenotype of islet ECs that might shape their molecular interaction with autoreactive T cells before and during the development of islet inflammation. In this study we examined the expression and functional significance of costimulatory molecules by human islet ECs. Freshly isolated human islet ECs constitutively expressed CD86 (B7-2) and ICOS ligand but not CD80 (B7-1) or CD40 costimulatory molecules. The functional activity of islet EC-expressed CD86 was examined by coculture of resting islet ECs with CD4 T cells stimulated by CD3 ligation alone. Marked T cell proliferation in the coculture was completely abrogated by mAb blockade of CD86, confirming that costimulatory properties are conferred on ECs by CD86 expression. In view of its location on the vasculature, we hypothesized a role for CD86 in T cell adhesion/transmigration. In keeping with this, adhesion/transmigration of activated (CD3 ligated) memory (CD45R0(+)) CD4 T cells across islet ECs was completely inhibited in the presence of CD86 blocking mAb. Identical results were obtained for T cell adhesion using either CTLA-4 blocking mAb or CTLA-4Ig (abatacept), indicating CTLA-4 as the T cell ligand for these CD86-mediated effects. These data suggest a novel role for CD86 expression on the microvasculature, whereby ligation of CTLA-4 on CD4 T cells by CD86 on islet ECs is key to the adhesion of recently activated T cells.  相似文献   

7.
Kaposi's sarcoma associated-herpes virus encodes two proteins, MIR (modulator of immune recognition) 1 and 2, which are involved in the evasion of host immunity. MIR1 and 2 have been shown to function as an E3 ubiquitin ligase for immune recognition-related molecules (e.g. major histocompatibility complex class I, B7-2, and ICAM-1) through the BKS (bovine herpesvirus 4, Kaposi's sarcoma associated-herpes virus, and Swinepox virus) subclass of plant homeodomain (PHD) domain, termed the BKS-PHD domain. Here we show that the human genome also encodes a novel BKS-PHD domain-containing protein that functions as an E3 ubiquitin ligase and whose putative substrate is the B7-2 co-stimulatory molecule. This novel E3 ubiquitin ligase was designated as c-MIR (cellular MIR) based on its functional and structural similarity to MIR1 and 2. Forced expression of c-MIR induced specific down-regulation of B7-2 surface expression through ubiquitination, rapid endocytosis, and lysosomal degradation of the target molecule. This specific targeting was dependent upon the binding of c-MIR to B7-2. Replacing the BKS-PHD domain of MIR1 with the corresponding domain of c-MIR did not alter MIR1 function. The discovery of c-MIR, a novel E3 ubiquitin ligase, highlights the possibility that viral immune regulatory proteins originated in the host genome and presents unique functions of BKS-PHD domain-containing proteins in mammals.  相似文献   

8.
Kaposi's sarcoma-associated herpesvirus encodes two transmembrane proteins (modulator of immune recognition [MIR]1 and MIR2) that downregulate cell surface molecules (MHC-I, B7.2, and ICAM-1) involved in the immune recognition of infected cells. This downregulation results from enhanced endocytosis and subsequent endolysosomal degradation of the target proteins. Here, we show that expression of MIR1 and MIR2 leads to ubiquitination of the cytosolic tail of their target proteins and that ubiquitination is essential for their removal from the cell surface. MIR1 and MIR2 both contain cytosolic zinc fingers of the PHD subfamily, and these structures are required for this activity. In vitro, addition of a MIR2-glutathione S-transferase (GST) fusion protein to purified E1 and E2 enzymes leads to transfer of ubiquitin (Ub) to GST-containing targets in an ATP- and E2-dependent fashion; this reaction is abolished by mutation of the Zn-coordinating residues of the PHD domain. Thus, MIR2 defines a novel class of membrane-bound E3 Ub ligases that modulates the trafficking of host cell membrane proteins.  相似文献   

9.
The innate immune system senses pathogens largely through signals initiated by proteins known as 'Toll-like receptors' (TLRs), of which ten representatives are known to be encoded in the human genome. The understanding of the biochemical circuitry that maintains the innate capacity for immune recognition and response has loomed as a major hurdle in immunology. A total of five adapter proteins with cytoplasmic domain homology to the TLRs are known to exist in mammals. These proteins show preferential association with individual TLR family members, giving a particular character to the signals that distinct microorganisms initiate, and also initiate the adaptive immune response. The adaptive immune response is dependent upon upregulation of costimulatory molecules (UCM) such as CD80 and CD86. Forward genetic analysis has revealed that this upregulation depends upon an adapter encoded by a locus known as Lps2, and upon type I interferon receptor signaling.  相似文献   

10.
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.  相似文献   

11.
Effective activation of T cells requires engagement of two separate T-cell receptors. The antigen-specific T-cell receptor (TCR) binds foreign peptide antigen-MHC complexes, and the CD28 receptor binds to the B7 (CD80/CD86) costimulatory molecules expressed on the surface of antigen-presenting cells (APC). The simultaneous triggering of these T-cell surface receptors with their specific ligands results in an activation of this cell. In contrast, CTLA-4 (CD152) is a distinct T-cell receptor that, upon binding to B7 molecules, sends an inhibitory signal to T cell activation. Many in vitro and in vivo studies demonstrated that both CD80 and CD86 ligands have an identical role in the activation of T cells. Recently, functions of B7 costimulatory molecules in vivo have been investigated in B7-1 and/or B7-2 knockout mice, and the authors concluded that CD86 could be more important for initiating T-cell responses, while CD80 could be more significant for maintaining these immune responses. In this study, we directly compared the role of CD80 and CD86 in initiating and maintaining proliferation of resting CD4(+) T cells in an in vitro mode system that allowed to provide the first signal-to-effector cells through the use of suboptimal doses of PHA and the second costimulatory signal through cells expressing CD80 or CD86, but not any other costimulatory molecules. Using this experimental system we demonstrate that the CD80 and CD86 molecules can substitute for each other in the initial activation of resting CD4(+) T cells and in the maintenance of their proliferative response.  相似文献   

12.
The CD80/86-CD28 and CD40-CD40 ligand costimulatory pathways are essential for Th cell-dependent B cell responses that generate high-affinity, class-switched Ab in vivo. Disruption of either costimulatory pathway results in defective in vivo humoral immune responses, but it remains unclear to what extent this is due to deficient activation of Th cells and/or of B cells. To address this issue, we generated mixed chimeras in which CD80/86- or CD40-deficient bone marrow-derived cells coexist with wild-type (WT) cells, thereby providing the functional T cell help and accessory cell functions required for fully competent B cell responses. We were then able to assess the requirement for CD80/86 or CD40 expression on B cells producing class-switched Ig in response to a T-dependent Ag. In CD80/86 WT plus CD80/86 double-knockout mixed chimeras, both WT- and CD80/86-deficient B cells produced IgG1 and IgE responses, indicating that direct signaling by CD80/86 is not essential for efficient B cell activation. In marked contrast, only WT IgG1 and IgE responses were detected in the chimeras containing CD40-deficient cells, demonstrating that CD40 expression on B cells is essential for class switching by those B cells. Thus, while disrupting either the CD80/86-CD28 or the CD40-CD40 ligand costimulatory pathway abrogates T-dependent B cell immune responses, the two pathways are nonredundant and mediated by distinct mechanisms.  相似文献   

13.
Thus far, immunotherapies based on one or a few immunostimulatory molecules have shown limited antitumor efficacy. This highlights the need to use multiple immunostimulatory molecules, to target different immune cells, including immunosuppressive cells, simultaneously. Consequently, in this study, we delivered intratumorally via protein transfer four molecules, including the chemotactic molecules secondary lymphoid tissue chemokine and Fas ligand and the costimulatory molecules 4-1BBL and TNF-related activation-induced cytokine. Secondary lymphoid tissue chemokine and Fas ligand together can attract an array of immune cells and induce apoptosis in CD4(+)CD25(+) regulatory T cells (Treg), whereas 4-1BBL and TRANCE together can stimulate T cells and dendritic cells (DCs). We show that the transfer of all four molecules increases tumor-infiltrating neutrophils, DCs, and CD4(+) and CD8(+) T cells and decreases intratumoral Treg. We show that the treatment favors the generation of a Th1 cytokine milieu at the tumor site, which is attributed not only to an increase in IL-12-producting DCs and IFN-gamma-producing CD8(+) T cells, but also to a decrease in IL-10-producing Treg. Importantly, in the L5178Y lymphoma model, we show that compared with transfer of the chemotactic molecules alone or the costimulatory molecules alone, transfer of all four molecules demonstrates stronger antitumor responses against established tumors. Furthermore, we show that the antitumor responses elicited by transfer of all four molecules are mediated by long-term, systemic antitumor immunity. Hence, this study demonstrates for the first time that combinatorial use of chemotactic and costimulatory molecules provides a useful strategy for enhancing antitumor responses.  相似文献   

14.
Because both T lymphocyte and airway smooth muscle (ASM) cell activation are events fundamentally implicated in the pathobiology of asthma, this study tested the hypothesis that cooperative intercellular signaling between activated T cells and ASM cells mediates proasthmatic changes in ASM responsiveness. Contrasting the lack of effect of resting human T cells, anti-CD3-activated T cells were found to adhere to the surface of naive human ASM cells, increase ASM CD25 cell surface expression, and induce increased constrictor responsiveness to acetylcholine and impaired relaxation responsiveness to isoproterenol in isolated rabbit ASM tissues. Comparably, exposure of resting T cells to ASM cells prestimulated with IgE immune complexes reciprocally elicited T cell adhesion to ASM cells and up-regulated T cell expression of CD25. Extended studies demonstrated that: 1) ASM cells express mRNAs and proteins for the cell adhesion molecules (CAMs)/costimulatory molecules, CD40, CD40L, CD80, CD86, ICAM-1 (CD54), and LFA-1 (CD11a/CD18); 2) apart from LFA-1, ASM cell surface expression of the latter molecules is up-regulated in the presence of activated T cells; and 3) pretreatment of ASM cells and tissues with mAbs directed either against CD11a or the combination of CD40 and CD86 completely abrogated both the activated T cell-induced changes in expression of the above CAMs/costimulatory molecules in ASM cells and altered ASM tissue responsiveness. Collectively, these observations identify the presence of bi-directional cross-talk between activated T cells and ASM cells that involves coligation of specific CAMs/costimulatory molecules, and this cooperative intercellular signaling mediates the induction of proasthmatic-like changes in ASM responsiveness.  相似文献   

15.
Persistent activation of T-lymphocytes requires two signals: one is initiated by T-cell receptor binding to antigenic peptide presented by MHC molecules. In addition, binding of the B7 family members CD80 or CD86 on professional antigen presenting cells to CD28 on T cells is considered to provide an important costimulatory signal. Activation without costimulation induces T-cell unresponsiveness or anergy. To selectively localize costimulatory activity to the surface of tumor cells and enhance activation of tumor-specific T cells, we have developed a novel molecular design for bispecific costimulatory proteins with antibody-like structure. Within a single polypeptide chain we have assembled the IgV-like, CD28-binding domain of human CD86 (CD86(111)) together with hinge, CH2 and CH3 domains of human IgG1, and the scFv(FRP5) antibody fragment which recognizes the ErbB2 (HER2) protooncogene present at high levels on the surface of many human tumor cells. Upon expression in the yeast Pichia pastoris, the resulting CD86(111)-IgG-scFv(FRP5) protein could be purified as a homodimeric, tetravalent molecule from culture supernatants using single-step affinity chromatography. Bispecific binding of the molecule to ErbB2 on the surface of tumor cells and to the B7 counter receptor CTLA-4 was demonstrated by FACS analysis. Potent costimulatory activity of chimeric CD86(111)-IgG-scFv(FRP5) was confirmed by its ability to stimulate the proliferation of primary human lymphocytes pre-activated by low concentrations of anti-CD3 antibody. Our results suggest that such multivalent soluble proteins which combine specific targeting to tumor cells with costimulatory activity may become useful tools to elicit and/or improve T-cell mediated, tumor-specific immune responses.  相似文献   

16.
Immunomodulators of pathogens frequently affect multiple cellular targets, thus preventing recognition by different immune cells. For instance, the K5 modulator of immune recognition (MIR2) from Kaposi sarcoma-associated herpesvirus prevents activation of cytotoxic T cells, natural killer cells, and natural killer T cells by downregulating major histocompatibility complex (MHC) class I molecules, the MHC-like molecule CD1, the cell adhesion molecules ICAM-1 and PECAM, and the co-stimulatory molecule B7.2. K5 belongs to a family of viral- and cellular-membrane-spanning RING ubiquitin ligases. While a limited number of transmembrane proteins have been shown to be targeted for degradation by this family, it is unknown whether additional targets exist. We now describe a quantitative proteomics approach to identify novel targets of this protein family. Using stable isotope labeling by amino acids, we compared the proteome of plasma, Golgi, and endoplasmic reticulum membranes in the presence and absence of K5. Mass spectrometric protein identification revealed four proteins that were consistently underrepresented in the plasma membrane of K5 expression cells: MHC I (as expected), bone marrow stromal antigen 2 (BST-2, CD316), activated leukocyte cell adhesion molecule (ALCAM, CD166) and Syntaxin-4. Downregulation of each of these proteins was independently confirmed by immunoblotting with specific antibodies. We further demonstrate that ALCAM is a bona fide target of both K5 and the myxomavirus homolog M153R. Upon exiting the endoplasmic reticulum, ALCAM is ubiquitinated in the presence of wild-type, but not RING-deficient or acidic motif-deficient, K5, and is targeted for lysosomal degradation via the multivesicular body pathway. Since ALCAM is the ligand for CD6, a member of the immunological synapse of T cells, its removal by viral immune modulators implies a role for CD6 in the recognition of pathogens by T cells. The unbiased global proteome analysis therefore revealed novel immunomodulatory functions of pathogen proteins.  相似文献   

17.
Poxviruses and gamma-2 herpesviruses share the K3 family of viral immune evasion proteins that inhibit the surface expression of glycoproteins such as major histocompatibility complex class I (MHC-I), B7.2, ICAM-1, and CD95(Fas). K3 family proteins contain an amino-terminal PHD/LAP or RING-CH domain followed by two transmembrane domains. To examine whether human homologues are functionally related to the viral immunoevasins, we studied seven membrane-associated RING-CH (MARCH) proteins. All MARCH proteins located to subcellular membranes, and several MARCH proteins reduced surface levels of known substrates of the viral K3 family. Two closely related proteins, MARCH-IV and MARCH-IX, reduced surface expression of MHC-I molecules. In the presence of MARCH-IV or MARCH-IX, MHC-I was ubiquitinated and rapidly internalized by endocytosis, whereas MHC-I molecules lacking lysines in their cytoplasmic tail were resistant to downregulation. The amino-terminal regions containing the RING-CH domain of several MARCH proteins examined catalyzed multiubiquitin formation in vitro, suggesting that MARCH proteins are ubiquitin ligases. The functional similarity of the MARCH family and the K3 family suggests that the viral immune evasion proteins were derived from MARCH proteins, a novel family of transmembrane ubiquitin ligases that seems to target glycoproteins for lysosomal destruction via ubiquitination of the cytoplasmic tail.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) carries virus-encoded and host-derived proteins. Recent advances in the functional characterization of host molecules inserted into mature virus particles have revealed that HIV-1 biology is influenced by the acquisition of host cell membrane components. The CD28/B7 receptor/ligand system is considered one of the fundamental elements of the normal immune response. Two major cell types that harbor HIV-1 in vivo, i.e., monocytes/macrophages and CD4+ T cells, express the costimulatory molecules CD80 (B7.1) and CD86 (B7.2). We investigated whether CD80 and CD86 are efficiently acquired by HIV-1, and if so, whether these host-encoded molecules can contribute to the virus life cycle. Here we provide the first evidence that the insertion of CD80 and CD86 into HIV-1 increases virus infectivity by facilitating the attachment and entry process due to interactions with their two natural ligands, CD28 and CTLA-4. Moreover, we demonstrate that NF-kappaB is induced by CD80- and CD86-bearing virions when they are combined with the engagement of the T-cell receptor/CD3 complex, an event that is inhibited upon surface expression of CTLA-4. Finally, both CD80 and CD86 were found to be efficiently incorporated into R5- and X4-tropic field strains of HIV-1 expanded in cytokine-treated macrophages. Thus, besides direct interactions between the virus envelope glycoproteins and cell surface constituents, such as CD4 and some specific chemokine coreceptors, HIV-1 may attach to target cells via interactions between cell-derived molecules incorporated into virions and their natural ligands. These findings support the theory that HIV-1-associated host proteins alter virus-host dynamics.  相似文献   

19.
There is great interest in understanding the role of costimulatory molecules in immune activation. In both the influenza and HIV DNA immunization models, several groups have reported that coimmunization of mice with plasmids encoding immunogen and CD86, but not CD80, effectively boosts Ag-specific T cell activation. This difference in immune priming provided an opportunity to examine the functional importance of different regions of the B.7 molecules in immune activation. To examine this issue, we developed a series of chimeric CD80 and CD86 constructs as well as deletion mutants, and examined their immune activating potential in the DNA vaccine model. We demonstrate that the lack of an Ig constant-like region in the CD80 molecule is critically important to the enhanced immune activation observed. CD80 C-domain deletion mutants induce a highly inflammatory Ag-specific cellular response when administered as part of a plasmid vaccine. The data suggest that the constant-like domains, likely through intermolecular interactions, are critically important for immune regulation during costimulation and that engineered CD80/86 molecules represent more potent costimulatory molecules and may improve vaccine adjuvant efficacy.  相似文献   

20.
Understanding key intervention points in developing immune responses may allow the rational inclusion of biological adjuvants into vaccines that could potentiate the immune response both quantitatively and qualitatively and enhance effective memory responses. Cytokine and chemokine combinations can potentially help target antigen to the appropriate antigen presenting cell and initiate maturation of these presenting cells, attract cells expressing different chemokine receptors, steer cellular immune responses toward Th1 and CD8 CTL, and enhance systemic and mucosal IgG and secretory IgA antibodies and determine their isotype balance. Animal protection studies suggest that synergistic combinations of cytokines and immunomodulating molecules may be required to protect from a viral challenge. For example, GM-CSF has been shown to be synergistic with IL-12 or CD40 ligand for induction of CTL and for antiviral protection, and the triple combination of GM-CSF, IL-12, and TNF alpha appears to induce the most effective protection in some mouse models. Chemokine-antigen fusions have also been shown to enhance immunogenicity of the antigen. Combinations of costimulatory molecules have been found to be synergistic when incorporated in a vaccine. Combined use of newer more potent vaccine constructs, containing codon optimized epitopes, relevant CpG motifs, cytokines, costimulatory molecules and chemokines, used in heterologous prime-boost strategies with viral vector vaccines or recombinant proteins, might afford the most potent vaccine approaches yet developed. In this review we will discuss the application and delivery of cytokines, costimulatory molecules, and chemokines toward improving current vaccine strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号