首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed to determine the effect of plasmalemma ATPase inhibitors on cell potentials (Ψ) and K+ (86Rb) influx of corn root tissue over a wide range of K+ activity. N,N′Dicyclohexylcarbodiimide (DCCD), oligomycin, and diethylstilbestrol (DES) pretreatment greatly reduced active K+ influx and depolarized Ψ at low, but not at high, K+ activity (K°). More comprehensive studies with DCCD and anoxia showed nearly complete inhibition of the active component of K+ influx over a wide range of K°, with no effect on the apparent permeability constant. DCCD had no effect on the electrogenic component of the cell potential (Ψp) above 0.2 millimolar K°. Net proton efflux was rapidly reduced 80 to 90% by DCCD. Since tissue ATP content and respiration were only slightly affected by the DCCD-pretreatment, the inhibitions of active K+ influx and Ψp at low K° can be attributed to inhibition of the plasmalemma ATPase.  相似文献   

2.
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.  相似文献   

3.
Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the “holdase” activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain–domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDβ interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDβ contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the “holdase” activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities.  相似文献   

4.
We found that resveratrol enhances interferon (IFN)-γ-induced tryptophanyl-tRNA-synthetase (TTS) expression in bone marrow-derived dendritic cells (BMDCs). Resveratrol-induced TTS expression is associated with glycogen synthase kinase-3β (GSK-3β) activity. In addition, we found that resveratrol regulates naïve CD8+ T-cell polarization by modulating GSK-3β activity in IFN-γ-stimulated BMDCs, and that resveratol induces upregulation of TTS in CD8+ T-cells in the in vivo tumor environment. Taken together, resveratrol upregulates IFN-γ-induced TTS expression in a GSK-3β-dependent manner, and this TTS modulation is crucial for DC-mediated T-cell modulation. [BMB Reports 2015; 48(5): 283-288]  相似文献   

5.
We investigated the modulation of cGMP-gated ion channels in single cone photoreceptors isolated from a fish retina. A new method allowed us to record currents from an intact outer segment while controlling its cytoplasmic composition by superfusion of the electropermeabilized inner segment. The sensitivity of the channels to agonists in the intact outer segment differs from that measured in membrane patches detached from the same cell. This sensitivity, measured as the ligand concentration necessary to activate half-maximal currents, K 1/2, also increases as Ca2+ concentration decreases. In electropermeabilized cones, K 1/2 for cGMP is 335.5 ± 64.4 μM in the presence of 20 μM Ca2+, and 84.3 ± 12.6 μM in its absence. For 8Br-cGMP, K 1/2 is 72.7 ± 11.3 μM in the presence of 20 μM Ca2+ and 15.3 ± 4.5 μM in its absence. The Ca2+-dependent change in agonist sensitivity is larger in extent than that measured in rods. In electropermeabilized tiger salamander rods, K 1/2 for 8Br-cGMP is 17.9 ± 3.8 μM in the presence of 20 μM Ca2+ and 7.2 ± 1.2 μM in its absence. The Ca2+-dependent modulation is reversible in intact cone outer segments, but is progressively lost in the absence of divalent cations, suggesting that it is mediated by a diffusible factor. Comparison of data in intact cells and detached membrane fragments from cones indicates that this factor is not calmodulin. At 40 μM 8Br-cGMP, the Ca2+-dependent change in sensitivity in cones is half-maximal at K Ca = 286 ± 66 nM Ca2+. In rods, by contrast, K Ca is ∼50 nM Ca2+. The difference in magnitude and Ca2+ dependence of channel modulation between photoreceptor types suggests that this modulation may play a more significant role in the regulation of photocurrent gain in cones than in rods.  相似文献   

6.
This study aimed to explore the function of IFN‐γ+IL‐17+Th17 cells on fibrosis in systemic scleroderma (SSc). Blood and skin samples were collected from 20 SSc cases and 10 healthy individuals. The percentage of IFN‐γ+IL‐17+Th17 cells was detected using flow cytometry. The in vitro induction of IFN‐γ+IL‐17+Th17 cells was performed adopting PHA and rIL‐12. Gene expression was detected via quantitative real‐time polymerase chain reaction (qRT‐PCR), whereas western blot analysis was adopted for protein analysis. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with SSc stages (P = .031), disease duration (P = .016), activity (P = .025) and skin scores (P < .001). In vitro, IFN‐γ+IL‐17+Th17 cells could promote the expressions of α‐SMA and COL1A1, revealing increased fibroblasts’ proliferation and enhanced collagen‐secreting capacity. In addition, IL‐21 expression was significantly increased in co‐culture medium of IFN‐γ+IL‐17+Th17 cells and fibroblasts (P < .001). IL‐21 neutralizer treatment resulted in the down‐regulation of α‐SMA and COL1A1. IL‐21 was confirmed as an effector of IFN‐γ+IL‐17+Th17 cells in fibrosis process. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with disease activity. IFN‐γ+IL‐17+Th17 cells could promote fibroblast proliferation and enhance collagen‐secreting ability via producing IL‐21, thus contributing to fibrosis in SSc.  相似文献   

7.
Therapeutic peptides that target antigen-specific regulatory T cells (Tregs) can suppress experimental autoimmune diseases. The heat shock protein (Hsp) 70, with its expression elevated in inflamed tissue, is a suitable candidate antigen because administration of both bacterial and mouse Hsp70 peptides has been shown to induce strong immune responses and to reduce inflammation via the activation or induction of Hsp specific Tregs. Although two subsets of Tregs exist, little is known about which subset of Tregs are activated by Hsp70 epitopes. Therefore, we set out to determine whether natural nTregs (derived from the thymus), or induced iTregs (formed in the periphery from CD4+CD25- naïve T cells) were targeted after Hsp70-peptide immunization. We immunized mice with the previously identified Hsp70 T cell epitope B29 and investigated the formation of functional iTregs by using an in vitro suppression assay and adoptive transfer therapy in mice with experimental arthritis. To study the in vivo induction of Tregs after peptide immunization, we depleted CD25+ cells prior to immunization, allowing the in vivo formation of Tregs from CD4+CD25- precursors. This approach allowed us to study in vivo B29-induced Tregs and to compare these cells with Tregs from non-depleted immunized mice. Our results show that using this approach, immunization induced CD4+CD25+ T cells in the periphery, and that these cells were suppressive in vitro. Additionally, adoptive transfer of B29-specific iTregs suppressed disease in a mouse model of arthritis. This study shows that immunization of mice with Hsp70 epitope B29 induces functionally suppressive iTregs from CD4+CD25- T cells.  相似文献   

8.
The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca2+]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na+/H+ exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the induction of pro-inflammatory factors and prevents LPS-induced liver injury likely by disrupting NHE1-Hsp70 interaction which consequently reduces the activation of IκB-α-NF-κB pathway in liver.  相似文献   

9.
10.
Cell potentials and K+ (86Rb) influx were determined for corn roots over a wide range of external K+ activity (K°) under control, anoxic, and uncoupled conditions. The data were analyzed using Goldman theory for the contribution of passive influx to total influx. For anoxic and uncoupled roots the K+ influx shows the functional relationship with K° predicted with constant passive permeability, although K+ permeability in uncoupled roots is about twice that of anoxic roots. In control roots the equation fails to describe K+ influx at low K°, but does so at high K°, with a gradual transition over the region where the electrical potential becomes equal to the equilibrium potential for K+ (ψ = EK). In the low K° range, where net K+ influx is energetically uphill, participation of an energy-linked K+ carrier is indicated. In the high K° range, K+ influx becomes passive down the electrical gradient established by the cell potential. Since the cell potential includes a substantial electrogenic component, anoxia or uncoupling reduces passive influx.  相似文献   

11.
Heat shock protein (Hsp) genes are stress-related genes that activate the host immune system during infection. Hsp genes expression in fish, studied during bacterial infections, is mostly confined to Hsp70 and Hsp90. The present study is an expression analysis of seven Hsp genes: Apg2, Hsp90, Hsp70, glucose-regulated protein 78 (Grp78), heat shock cognate 70 (Hsc70), Grp75, and Hsp30 during Aeromonas hydrophila infection in rohu, Labeo rohita. Forty-eight rohu juveniles were challenged with 3 × 107 cfu bacteria per 20 g of body weight intraperitoneally. The expression of these genes was studied in infected liver, anterior kidney, and spleen tissues of rohu at different time periods: 0, 1, 3, 6, 12, 24, 48, 72 h, 7, and 15 days post-infection by qPCR. The Hsp gene modulation was greater in liver as compared to spleen and kidney tissues. Induced expression of Apg2, Hsp90, Grp78, Grp75, and Hsc70 was noticed during peak periods (3 to 24 h post-challenge) of bacterial infectivity. Hsp70 was found to be down-regulated during the process of infection. In contrast to the other six genes, Hsp30 showed a variable expression pattern in all three tissues. Grp78 was found to be the most highly (1,587-fold) expressed gene in liver at 12 h post-challenge. Further, molecular characterization of Grp78 revealed it to be a highly conserved Hsp gene, essential not only during infection but also during early developmental stages of rohu, and its expression was noticed in all organs studied except in gill tissues, which indicated its potential immune regulatory role during infection process.  相似文献   

12.
1. The adenosine-triphosphatase activity of rat-brain microsomes was measured between 0° and 37°. The stimulatory effect of Na+ plus K+ on the Mg2+-dependent adenosine-triphosphatase activity decreased sharply with decreasing temperature and became negligible at 0°. An Arrhenius plot drawn from the experimental data showed two discontinuities: one at about 6° and the other at about 20°. 2. The increment in activity induced by Na+ plus K+ was more sensitive to oligomycin at lower than at higher temperatures, but the opposite was observed for ouabain. The action of oligomycin showed a biphasic character, since below a certain concentration it caused slight activation of Na+-plus-K+-activated adenosine triphosphatase. 3. Where oligomycin increased the activity of the enzyme, it also enhanced the accumulation of an acid-precipitable phosphorylated compound formed through the transfer of the γ-phosphate group of [32P]ATP to the enzyme system. Stimulatory concentrations of oligomycin did not interfere with K+-mediated dephosphorylation of the intermediate, though high concentrations of oligomycin counteracted the effect of K+. 4. The temperature profile of K+-stimulated microsomal phosphatase qualitatively resembled that of microsomal adenosine triphosphatase.  相似文献   

13.
The NAD+-dependent isocitrate dehydrogenase from etiolated pea (Pisum sativum L.) mitochondria was purified more than 200-fold by dye-ligand binding on Matrix Gel Blue A and gel filtration on Superose 6. The enzyme was stabilized during purification by the inclusion of 20% glycerol. In crude matrix extracts, the enzyme activity eluted from Superose 6 with apparent molecular masses of 1400 ± 200, 690 ± 90, and 300 ± 50 kD. During subsequent purification steps the larger molecular mass species disappeared and an additional peak at 94 ± 16 kD was evident. The monomer for the enzyme was tentatively identified at 47 kD by sodium dodecyl-polyacrylamide gel electrophoresis. The NADP+-specific isocitrate dehydrogenase activity from mitochondria eluted from Superose 6 at 80 ± 10 kD. About half of the NAD+ and NADP+-specific enzymes remained bound to the mitochondrial membranes and was not removed by washing. The NAD+-dependent isocitrate dehydrogenase showed sigmodial kinetics in response to isocitrate (S0.5 = 0.3 mm). When the enzyme was aged at 4°C or frozen, the isocitrate response showed less allosterism, but this was partially reversed by the addition of citrate to the reaction medium. The NAD+ isocitrate dehydrogenase showed standard Michaelis-Menten kinetics toward NAD+ (Km = 0.2 mm). NADH was a competitive inhibitor (Ki = 0.2 mm) and, unexpectedly, NADPH was a noncompetitive inhibitor (Ki = 0.3 mm). The regulation by NADPH may provide a mechanism for coordination of pyridine nucleotide pools in the mitochondria.  相似文献   

14.
Current-voltage curves for DIDS-insensitive Cl conductance have been determined in human red blood cells from five donors. Currents were estimated from the rate of cell shrinkage using flow cytometry and differential laser light scattering. Membrane potentials were estimated from the extracellular pH of unbuffered suspensions using the proton ionophore FCCP. The width of the Gaussian distribution of cell volumes remained invariant during cell shrinkage, indicating a homogeneous Cl conductance among the cells. After pretreatment for 30 min with DIDS, net effluxes of K+ and Cl were induced by valinomycin and were measured in the continued presence of DIDS; inhibition was maximal at ∼65% above 1 μM DIDS at both 25°C and 37°C. The nonlinear current-voltage curves for DIDS-insensitive net Cl effluxes, induced by valinomycin or gramicidin at varied [K+]o, were compared with predictions based on (1) the theory of electrodiffusion, (2) a single barrier model, (3) single occupancy, multiple barrier models, and (4) a voltage-gated mechanism. Electrodiffusion precisely describes the relationship between the measured transmembrane voltage and [K+]o. Under our experimental conditions (pH 7.5, 23°C, 1–3 μM valinomycin or 60 ng/ml gramicidin, 1.2% hematocrit), the constant field permeability ratio PK/PCl is 74 ± 9 with 10 μM DIDS, corresponding to 73% inhibition of PCl. Fitting the constant field current-voltage equation to the measured Cl currents yields P Cl = 0.13 h−1 with DIDS, compared to 0.49 h−1 without DIDS, in good agreement with most previous studies. The inward rectifying DIDS-insensitive Cl current, however, is inconsistent with electrodiffusion and with certain single-occupancy multiple barrier models. The data are well described either by a single barrier located near the center of the transmembrane electric field, or, alternatively, by a voltage-gated channel mechanism according to which the maximal conductance is 0.055 ± 0.005 S/g Hb, half the channels are open at −27 ± 2 mV, and the equivalent gating charge is −1.2 ± 0.3.  相似文献   

15.
Metabolite-dependent conformational switching in RNA riboswitches is now widely accepted as a critical regulatory mechanism for gene expression in bacterial systems. More recently, similar gene regulation mechanisms have been found to be important for viral systems as well. One of the most abundant and best-studied systems is the tRNA-like structure (TLS) domain, which has been found to occur in many plant viruses spread across numerous genera. In this work, folding dynamics for the TLS domain of Brome Mosaic Virus have been investigated using single-molecule fluorescence resonance energy transfer techniques. In particular, burst fluorescence methods are exploited to observe metal-ion ([Mn+])-induced folding in freely diffusing RNA constructs resembling the minimal TLS element of brome mosaic virus RNA3. The results of these experiments reveal a complex equilibrium of at least three distinct populations. A stepwise, or consecutive, thermodynamic model for TLS folding is developed, which is in good agreement with the [Mn+]-dependent evolution of conformational populations and existing structural information in the literature. Specifically, this folding pathway explains the metal-ion dependent formation of a functional TLS domain from unfolded RNAs via two consecutive steps: 1) hybridization of a long-range stem interaction, followed by 2) formation of a 3′-terminal pseudoknot. These two conformational transitions are well described by stepwise dissociation constants for [Mg2+] (K1 = 328 ± 30 μM and K2 = 1092 ± 183 μM) and [Na+] (K1 = 74 ± 6 mM and K2 = 243 ± 52 mM)-induced folding. The proposed thermodynamic model is further supported by inhibition studies of the long-range stem interaction using a complementary DNA oligomer, which effectively shifts the dynamic equilibrium toward the unfolded conformation. Implications of this multistep conformational folding mechanism are discussed with regard to regulation of virus replication.  相似文献   

16.
At low levels of dissolved inorganic carbon (DIC) and alkaline pH the rate of photosynthesis by air-grown cells of Synechococcus leopoliensis (UTEX 625) was enhanced 7- to 10-fold by 20 millimolar Na+. The rate of photosynthesis greatly exceeded the CO2 supply rate and indicated that HCO3 was taken up by a Na+-dependent mechanism. In contrast, photosynthesis by Synechococcus grown in standing culture proceeded rapidly in the absence of Na+ and exceeded the CO2 supply rate by 8 to 45 times. The apparent photosynthetic affinity (K½) for DIC was high (6-40 micromolar) and was not markedly affected by Na+ concentration, whereas with air-grown cells K½ (DIC) decreased by more than an order of magnitude in the presence of Na+. Lithium, which inhibited Na+-dependent HCO3 uptake in air-grown cells, had little effect on Na+-independent HCO3 uptake by standing culture cells. A component of total HCO3 uptake in standing culture cells was also Na+-dependent with a K½ (Na+) of 4.8 millimolar and was inhibited by lithium. Analysis of 14C-fixation during isotopic disequilibrium indicated that standing culture cells also possessed a Na+-independent CO2 transport system. The conversion from Na+-independent to Na+-dependent HCO3 uptake was readily accomplished by transferring cells grown in standing to growth in cultures bubbled with air. These results demonstrated that the conditions experienced during growth influenced the mode by which Ssynechococcus acquired HCO3 for subsequent photosynthetic fixation.  相似文献   

17.
Reversible lysine acetylation plays an important role in the regulation of T cell responses. HDAC1 has been shown to control peripheral T helper cells, however the role of HDAC1 in CD8+ T cell function remains elusive. By using conditional gene targeting approaches, we show that LckCre-mediated deletion of HDAC1 led to reduced numbers of thymocytes as well as peripheral T cells, and to an increased fraction of CD8+CD4 cells within the CD3/TCRβlo population, indicating that HDAC1 is essential for the efficient progression of immature CD8+CD4 cells to the DP stage. Moreover, CD44hi effector CD8+ T cells were enhanced in mice with a T cell-specific deletion of HDAC1 under homeostatic conditions and HDAC1-deficient CD44hi CD8+ T cells produced more IFNγ upon ex vivo PMA/ionomycin stimulation in comparison to wild-type cells. Naïve (CD44l°CD62L+) HDAC1-null CD8+ T cells displayed a normal proliferative response, produced similar amounts of IL-2 and TNFα, slightly enhanced amounts of IFNγ, and their in vivo cytotoxicity was normal in the absence of HDAC1. However, T cell-specific loss of HDAC1 led to a reduced anti-viral CD8+ T cell response upon LCMV infection and impaired expansion of virus-specific CD8+ T cells. Taken together, our data indicate that HDAC1 is required for the efficient generation of thymocytes and peripheral T cells, for proper CD8+ T cell homeostasis and for an efficient in vivo expansion and activation of CD8+ T cells in response to LCMV infection.  相似文献   

18.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

19.
The eukaryotic replisome is rapidly disassembled during DNA replication termination. In metazoa, the cullin‐RING ubiquitin ligase CUL‐2LRR‐1 drives ubiquitylation of the CMG helicase, leading to replisome disassembly by the p97/CDC‐48 “unfoldase”. Here, we combine in vitro reconstitution with in vivo studies in Caenorhabditis elegans embryos, to show that the replisome‐associated TIMELESS‐TIPIN complex is required for CUL‐2LRR‐1 recruitment and efficient CMG helicase ubiquitylation. Aided by TIMELESS‐TIPIN, CUL‐2LRR‐1 directs a suite of ubiquitylation enzymes to ubiquitylate the MCM‐7 subunit of CMG. Subsequently, the UBXN‐3 adaptor protein directly stimulates the disassembly of ubiquitylated CMG by CDC‐48_UFD‐1_NPL‐4. We show that UBXN‐3 is important in vivo for replisome disassembly in the absence of TIMELESS‐TIPIN. Correspondingly, co‐depletion of UBXN‐3 and TIMELESS causes profound synthetic lethality. Since the human orthologue of UBXN‐3, FAF1, is a candidate tumour suppressor, these findings suggest that manipulation of CMG disassembly might be applicable to future strategies for treating human cancer.  相似文献   

20.
Metformin is the first-line antidiabetic agent for type 2 diabetes mellitus (T2DM) treatment. Although accumulated evidence has shed light on the consequences of metformin action, the precise mechanisms of its action, especially in the pancreas, are not fully understood. Aquaporin 7 (AQP7) acts as a critical regulator of intraislet glycerol content, which is necessary for insulin production and secretion. The aim of this study was to investigate the effects of different doses of metformin on AQP7 expression and explore the possible mechanism of its protective effects in the pancreatic islets. We used an in vivo model of high-fat diet in streptozocin-induced diabetic rats and an in vitro model of rat pancreatic β-cells (INS-1 cells) damaged by hyperglycemia and hyperlipidemia. Our data showed that AQP7 expression levels were decreased, whereas p38 and JNK mitogen-activated protein kinases (MAPKs) were activated in vivo and in vitro in response to hyperglycemia and hyperlipidemia. T2DM rats treated with metformin demonstrated a reduction in blood glucose levels and increased regeneration of pancreatic β-cells. In addition, metformin upregulated AQP7 expression as well as inhibited activation of p38 and JNK MAPKs both in vivo and in vitro. Overexpression of AQP7 increased glycerol influx into INS-1 cells, whereas inhibition of AQP7 reduced glycerol influx, thereby decreasing subsequent insulin secretion. Our findings demonstrate a new mechanism by which metformin suppresses the p38 and JNK pathways, thereby upregulating pancreatic AQP7 expression and promoting glycerol influx into pancreatic β-cells and subsequent insulin secretion in T2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号