首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regeneration of pulmonary epithelial cells plays an important role in the recovery of acute lung injury (ALI), which is defined by pulmonary epithelial cell death. However, the mechanism of the regenerative capacity of alveolar epithelial cells is unknown. Using a lung injury mouse model induced by hemorrhagic shock and lipopolysaccharide, a protein mass spectrometry‐based high‐throughput screening and linage tracing technology to mark alveolar epithelial type 2 cells (AEC2s), we analyzed the mechanism of alveolar epithelial cells proliferation. We demonstrated that the expression of Hippo‐yes‐associated protein 1 (YAP1) key proteins were highly consistent with the regularity of the proliferation of alveolar epithelial type 2 cells after ALI. Furthermore, the results showed that YAP1+ cells in lung tissue after ALI were mainly Sftpc lineage‐labeled AEC2s. An in vitro proliferation assay of AEC2s demonstrated that AEC2 proliferation was significantly inhibited by both YAP1 small interfering RNA and Hippo inhibitor. These findings revealed that YAP functioned as a key regulator to promote AEC2s proliferation, with the Hippo signaling pathway playing a pivotal role in this process.  相似文献   

2.
Rationale: Myocardial ischemia/reperfusion (I/R) injury is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction (AMI). The mitochondrial F1Fo-ATPase inhibitory factor 1 (IF1) blocks the reversal of the F1Fo-ATP synthase to prevent detrimental consumption of cellular ATP and associated demise. In the present study, we study the role and mechanism of IF1 in myocardial I/R injury.Methods: Mice were ligated the left anterior descending coronary artery to build the I/R model in vivo. Rat hearts were isolated and perfused with constant pressure according to Langendorff. Also, neonatal cardiomyocytes hypoxia-reoxygenation (H/R) model was also used. Myocardial infarction area, cardiac function, cellular function, and cell viability was conducted and compared.Results: Our data revealed that IF1 is upregulated in hearts after I/R and cardiomyocytes with hypoxia/re-oxygenation (H/R). IF1 delivered with adenovirus and adeno-associated virus serotype 9 (AAV9) ameliorated cardiac dysfunction and pathological development induced by I/R ex vivo and in vivo. Mechanistically, IF1 stimulates glucose uptake and glycolysis activity and stimulates AMPK activation during in vivo basal and I/R and in vitro OGD/R conditions, and activation of AMPK by IF1 is responsible for its cardioprotective effects against H/R-induced injury.Conclusions: These results suggest that increased IF1 in the I/R heart confer cardioprotective effects via activating AMPK signaling. Therefore, IF1 can be used as a potential therapeutic target for the treatment of pathological ischemic injury and heart failure.  相似文献   

3.
《Developmental cell》2022,57(14):1742-1757.e5
  1. Download : Download high-res image (129KB)
  2. Download : Download full-size image
  相似文献   

4.
The occurrence and development of acute lung injury (ALI) involve a variety of pathological factors and complex mechanisms. How pulmonary cells communicate with each other and subsequently trigger an inflammatory cascade remains elusive. Extracellular vesicles (EVs) are a critical class of membrane-bound structures that have been widely investigated for their roles in pathophysiological processes, especially in immune responses and tumor progression. Most of the current knowledge of the functions of EVs is related to functions derived from viable cells (e.g., microvesicles and exosomes) or apoptotic cells (e.g., apoptotic bodies); however, there is limited understanding of the rapidly progressing inflammatory response in ALI. Herein, a comprehensive analysis of micron-sized EVs revealed a mass production of 1-5 μm pyroptotic bodies (PyrBDs) release in the early phase of ALI induced by lipopolysaccharide (LPS). Alveolar macrophages were the main source of PyrBDs in the early phase of ALI, and the formation and release of PyrBDs were dependent on caspase-1. Furthermore, PyrBDs promoted the activation of epithelial cells, induced vascular leakage and recruited neutrophils through delivery of damage-associated molecular patterns (DAMPs). Collectively, these findings suggest that PyrBDs are mainly released by macrophages in a caspase-1-dependent manner and serve as mediators of LPS-induced ALI.  相似文献   

5.
6.
In China, baicalin is the main active component of Scutellaria baicalensis, which has been used in the treatment of inflammation-related diseases, such as inflammation-induced acute lung injury. However, its specific mechanism remains unclear. This study examined the protective effect of baicalin on LPS-induced inflammation injury of alveolar epithelial cell line A549 and explored its protective mechanism. Compared with the LPS-induced group, the proliferation inhibition rates of alveolar type II epithelial cell line A549 intervened by different concentrations of baicalin decreased significantly, as did the levels of inflammatory factors IL-6, IL-1β, prostaglandin 2 and TNF-α in the supernatant. The expression levels of inflammatory proteins inducible NO synthase (iNOS), NF-κB65, phosphorylated ERK (p-ERK1/2), and phosphorylated c-Jun N-terminal kinase (p-JNK1) significantly decreased, as did the protein expression of follistatin-like protein 1 (FSTL1). In contrast, expression of miR-200b-3p significantly increased in a dose-dependent manner. These results suggested that baicalin could significantly inhibit the expression of inflammation-related proteins and improve LPS-induced inflammatory injury in alveolar type II epithelial cells. The mechanism may be related to the inhibition of ERK/JNK inflammatory pathway activation by increasing the expression of miR-200b-3p. Thus, FSTL1 is the regulatory target of miR-200b-3p.  相似文献   

7.
《Cell》2023,186(7):1478-1492.e15
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   

8.
Necroptosis has been found to be involved in the pathogenesis of some lung diseases, but its role in hyperoxic acute lung injury (HALI) is still unclear. This study aimed to investigate contribution of necroptosis to the pathogenesis of HALI induced by hyperbaric hyperoxia exposure in a rat model. Rats were divided into control group, HALI group, Nec-1 (necroptosis inhibitor) group and edaravone group. Rats were exposed to pure oxygen at 250?kPa for 6?h to induce HALI. At 30?min before hyperoxia exposure, rats were intraperitoneally injected with Nec-1 or edaravone, and sacrificed at 24?h after hyperoxia exposure. Lung injury was evaluated by histology, lung water to dry ratio (W/D) and bronchoalveolar lavage fluid (BALF) biochemistry; the serum and plasma oxidative stress, expression of RIP1, RIP3 and MLKL, and interaction between RIP1 and RIP3 were determined. Results showed hyperoxia exposure significantly caused damage to lung and increased necroptotic cells and the expression of RIP1, RIP3 and MLKL. Edaravone pre-treatment not only inhibited the oxidative stress in HALI, but also reduced necroptotic cells, decreased the expression of RIP1, RIP3 and MLKL and improved lung pathology. Nec-1 pretreatment inhibited necroptosis and improved lung pathology, but had little influence on oxidative stress. This study suggests hyperoxia exposure induces oxidative stress may activate necroptosis, involving in the pathology of HALI, and strategies targeting necroptosis may become promising treatments for HALI.  相似文献   

9.
Acute lung injury (ALI) is a severe pulmonary disease that causes a high number of fatalities worldwide. Studies have shown that FoxA1 expression is upregulated during ALI and may play an important role in ALI by promoting the apoptosis of alveolar type II epithelial cells. However, the mechanism of FoxA1 overexpression in ALI is unclear. In this study, an in vivo murine model of ALI and alveolar type II epithelial cells injury was induced using lipopolysaccharide (LPS). LPS upregulated FoxA1 in the lung tissue of the in vivo ALI model and in LPS-challenged type II epithelial cells. In contrast, miR-17 was significantly downregulated in these models. After miR-17 antagomir injection, the expression of FoxA1 was significantly increased in ALI mice. MiR-17 mimics could significantly inhibit FoxA1 mRNA and protein expression, whereas the miR-17 inhibitor could significantly increase FoxA1 mRNA and protein expression in LPS-induced type II epithelial cells. Thus, our results suggest that the downregulation of miR-17 expression could lead to FoxA1 overexpression in ALI.  相似文献   

10.
Reduning injection (RDN), a patented Chinese medicine, is broadly used for common cold and lung infection in clinic, but the mechanism underlying its effects on inflammation-related pulmonary injury remains unclear. Paraquat (PQ, bolus 15 mg/kg dose, ip) was administered for acute lung injury induction in mice, which were orally administered dexamethasone (2 mg/kg) or RDN (50 and 100 mg/kg/day) for 5 days. After treatment, plasma and lung tissue samples from the euthanized animals were obtained and analyzed by histological, biochemical and immunoblot assays. Histological observation demonstrated RDN alleviated PQ-induced lung damage. Meanwhile, RDN suppressed myeloperoxidase (MPO) activity, reduced the wet/dry (W/D) ratio and decreased the amounts of total leukocytes and neutrophils. Treatment also markedly decreased the amounts of malondialdehyde, MPO, and inflammatory cytokines while increasing superoxide dismutase activity in comparison with the PQ group. In immunoblot, RDN blocked the phosphorylation levels of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), JNK, ERK, p38, inhibitor of nuclear factor κB kinase and nuclear factor-κB (NF-κB) in lung tissue specimens in PQ-challenged animals, which was further verified in vitro. The above data indicated protective effects for RDN in PQ-induced lung damage, possibly through inhibition of the AMPK/MAPK/NF-κB pathway.  相似文献   

11.
Corynoline has been reported to have anti-inflammatory and antioxidative effects. In the present study, the potential protective effects of corynoline against zearalenone (ZEA)-induced liver injury were investigated. ZEA was administered daily for 5 days. Then, liver tissues were used for subsequent experiments. Corynoline attenuated liver histopathological changes induced by ZEA. The production of tumor necrosis factor-α and interleukin-1β in liver tissues, as well as aspartate aminotransferase and alanine aminotransferase in serum, was also inhibited by corynoline. Meanwhile, ZEA-induced MPO activity and MDA content were both attenuated by corynoline. ZEA-induced NF-κB p65 and IκBα phosphorylation were inhibited by corynoline. Furthermore, SIRT1, Nrf2, and HO-1 expression were increased by corynoline. In addition, the protective effects of corynoline against liver injury were reversed by the SIRT1 inhibitor EX-527. Taken together, corynoline protected against ZEA-induced liver injury by activating the SIRT1/Nrf2 signaling pathway.  相似文献   

12.
Senescence of alveolar type 2 (ATII) cells, progenitors of the alveolar epithelium, is implicated in the pathogeneses of idiopathic pulmonary fibrosis (IPF), an aging‐related progressive fatal lung disorder with unknown etiology. The mechanism underlying ATII cell senescence in fibrotic lung diseases, however, remains poorly understood. In this study, we report that ATII cells in IPF lungs express higher levels of serpine 1, also known as plasminogen activator inhibitor 1 (PAI‐1), and cell senescence markers p21 and p16, compared to ATII cells in control lungs. Silencing PAI‐1 or inhibition of PAI‐1 activity in cultured rat ATII (L2) cells leads to decreases in p53 serine 18 phosphorylation (p53S18P), p53 and p21 protein expressions; an increase in retinoblastoma protein phosphorylation (ppRb); and a reduction in the sensitivity to bleomycin‐ and doxorubicin‐induced senescence. Silencing p53, on the other hand, abrogates PAI‐1 protein‐stimulated p21 expression and cell senescence. In vivo studies, using ATII cell‐specific PAI‐1 conditional knockout mouse model generated recently in this laboratory, further support the role of PAI‐1 in the activation of p53‐p21‐Rb cell cycle repression pathway, ATII cell senescence, and lung fibrosis induced by bleomycin. This study reveals a novel function of PAI‐1 in regulation of cell cycle and suggests that elevation of PAI‐1 contributes importantly to ATII cell senescence in fibrotic lung diseases.  相似文献   

13.
Previously, we have shown that hydrogen sulphide (H2S) might be pro‐inflammatory during acute pancreatitis (AP) through inhibiting apoptosis and subsequently favouring a predominance of necrosis over apoptosis. In this study, we sought to investigate the detrimental effects of H2S during AP specifically with regard to its regulation on the impaired autophagy. The incubated levels of H2S were artificially intervened by an administration of sodium hydrosulphide (NaHS) or DL‐propargylglycine (PAG) after AP induction. Accumulation of autophagic vacuoles and pre‐mature activation of trypsinogen within acini, which indicate the impairment of autophagy during AP, were both exacerbated by treatment with NaHS but attenuated by treatment with PAG. The regulation that H2S exerted on the impaired autophagy during AP was further attributed to over‐activation of autophagy rather than hampered autophagosome–lysosome fusion. To elucidate the molecular mechanism that underlies H2S‐mediated over‐activation of autophagy during AP, we evaluated phosphorylations of AMP‐activated protein kinase (AMPK), AKT and mammalian target of rapamycin (mTOR). Furthermore, Compound C (CC) was introduced to determine the involvement of mTOR signalling by evaluating phosphorylations of downstream effecters including p70 S6 kinase (P70S6k) and UNC‐51‐Like kinase 1 (ULK1). Our findings suggested that H2S exacerbated taurocholate‐induced AP by over‐activating autophagy via activation of AMPK and subsequently, inhibition of mTOR. Thus, an active suppression of H2S to restore over‐activated autophagy might be a promising therapeutic approach against AP‐related injuries.  相似文献   

14.
Although several studies have shown that an induction of insulin-like growth factor (IGF) components occurs during hyperoxia-mediated lung injury, the role of these components in tissue repair is not well known. The present study aimed to elucidate the role of IGF system components in normal tissue remodeling. We used a rat model of lung injury and remodeling by exposing rats to > 95% oxygen for 48 h and allowing them to recover in room air for up to 7 days. The mRNA expression of IGF-I, IGF-II, and IGF-1 receptor (IGF-1R) increased during injury. However, the protein levels of these components remained elevated until day 3 of the recovery and were highly abundant in alveolar type II cells. Among IGF binding proteins (IGFBPs), IGFBP-5 mRNA expression increased during injury and at all the recovery time points. IGFBP-2 and -3 mRNA were also elevated during injury phase. In an in vitro model of cell differentiation, the expression of IGF-I and IGF-II increased during trans-differentiation of alveolar epithelial type II cells into type-I like cells. The addition of anti-IGF-1R and anti-IGF-I antibodies inhibited the cell proliferation and trans-differentiation to some extent, as evident by cell morphology and the expression of type I and type II cell markers. These findings demonstrate that the IGF signaling pathway plays a critical role in proliferation and differentiation of alveolar epithelium during tissue remodeling.  相似文献   

15.
16.
Salt-inducible kinase 1 (SIK1) in epithelial cells mediates the increases in active sodium transport (Na+, K+-ATPase-mediated) in response to elevations in the intracellular concentration of sodium. In lung alveolar epithelial cells increases in active sodium transport in response to β-adrenergic stimulation increases pulmonary edema clearance. Therefore, we sought to determine whether SIK1 is present in lung epithelial cells and to examine whether isoproterenol-dependent stimulation of Na+, K+-ATPase is mediated via SIK1 activity. All three SIK isoforms were present in airway epithelial cells, and in alveolar epithelial cells type 1 and type 2 from rat and mouse lungs, as well as from human and mouse cell lines representative of lung alveolar epithelium. In mouse lung epithelial cells, SIK1 associated with the Na+, K+-ATPase α-subunit, and isoproterenol increased SIK1 activity. Isoproterenol increased Na+, K+-ATPase activity and the incorporation of Na+, K+-ATPase molecules at the plasma membrane. Furthermore, those effects were abolished in cells depleted of SIK1 using shRNA, or in cells overexpressing a SIK1 kinase-deficient mutant. These results provide evidence that SIK1 is present in lung epithelial cells and that its function is relevant for the action of isoproterenol during regulation of active sodium transport. As such, SIK1 may constitute an important target for drug discovery aimed at improving the clearance of pulmonary edema.  相似文献   

17.
Long-chain n-3 polyunsaturated fatty acids are known to have beneficial effects on intestinal health. However, the underling mechanisms are largely unknown. The present study was conducted to investigate whether docosahexaenoic acid (DHA) attenuates TNF-α-induced intestinal cell injury and barrier dysfunction by modulating necroptosis signalling. Intestinal porcine epithelial cell line 1 was cultured with or without 12.5 µg/ml DHA, followed by exposure to 50 ng/ml TNF-α for indicated time periods. DHA restored cell viability and cell number triggered by TNF-α. DHA also improved barrier function, which was indicated by increased trans-epithelial electrical resistance, decreased FD4 flux and increased membrane localisation of zonula occludins (ZO-1) and claudin-1. Moreover, DHA suppressed cell necrosis in TNF-α-challenged cells, as shown in the IncuCyte ZOOM™ live cell imaging system and transmission electron microscopy. In addition, DHA decreased protein expression of TNF receptor, receptor interacting protein kinase 1, RIP3 and phosphorylation of mixed lineage kinase-like protein, phosphoglycerate mutase family 5, dynamin-related protein 1 and high mobility group box-1 protein. Furthermore, DHA suppressed protein expression of caspase-3 and caspase-8. Collectively, these results indicate that DHA is capable of alleviating TNF-α-induced cell injury and barrier dysfunction by suppressing the necroptosis signalling pathway.  相似文献   

18.

Background

Influenza A virus (IAV) infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2) activates the majority of antioxidant genes.

Methods

Alveolar type II (ATII) cells and alveolar macrophages (AM) were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like) cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8) virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2) or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively.

Results

We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis) but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and oxidative stress. However, AdNrf2 did not increase IFN-λ1 (IL-29) levels.

Conclusions

Our results indicate that IAV induces alveolar epithelial injury and that Nrf2 protects these cells from the cytopathic effects of IAV likely by increasing the expression of antioxidant genes. Identifying the pathways involved in protecting cells from injury during influenza infection may be particularly important for developing new therapeutic strategies.  相似文献   

19.
Suppressor of cytokine signaling-1 (SOCS-1) is a member of the suppressor of cytokine signaling family of proteins and an inhibitor of interleukin-6 (IL-6) signaling. SOCS-1 has been shown to protect cells from cellular damage and apoptosis induced by tumor necrosis factor (TNF), lipopolysaccharide (LPS), and interferon gamma (IL-γ). However, it is not known whether increased SOCS-1 is protective during pulmonary oxidative stress. Therefore, we hypothesized that increased SOCS-1 in the lungs of mice would be protective in the setting of hyperoxic lung injury. We administered SOCS-1 adenovirus (Ad-SOCS-1) intratracheally into the lungs and exposed the mice to 100% O2. Mice infected with GFP adenovirus (Ad-GFP) were used as controls. Mice treated with Ad-SOCS-1 had enhanced survival in 100% oxygen compared to Ad-GFP-administered mice. After 3 days of hyperoxia, Ad-GFP mice were ill and tachypnic and died after 4 days. In contrast, all Ad-SOCS-1-treated mice survived for at least 6 days in hyperoxia and 80% survived beyond 7 days. Ad-SOCS-1 transfection protected mouse lungs from injury as indicated by lower lung wet/dry weight, alveolar–capillary protein leakage, reduced infiltration of inflammatory cells, and lower content of thiobarbituric acid-reactive substances in lung homogenate. Our results also indicated that Ad-SOCS-1 significantly inhibits hyperoxia-induced ASK-1 (apoptosis signal-regulating kinase 1) expression. Taken together, these findings show that increased expression of adenovirus-mediated SOCS-1 in the lungs of mice significantly protects against hyperoxic lung injury.  相似文献   

20.
Li C  Yang P  Sun Y  Li T  Wang C  Wang Z  Zou Z  Yan Y  Wang W  Wang C  Chen Z  Xing L  Tang C  Ju X  Guo F  Deng J  Zhao Y  Yang P  Tang J  Wang H  Zhao Z  Yin Z  Cao B  Wang X  Jiang C 《Cell research》2012,22(3):528-538
The 2009 flu pandemic involved the emergence of a new strain of a swine-origin H1N1 influenza virus (S-OIV H1N1) that infected almost every country in the world. Most infections resulted in respiratory illness and some severe cases resulted in acute lung injury. In this report, we are the first to describe a mouse model of S-OIV virus infection with acute lung injury and immune responses that reflect human clinical disease. The clinical efficacy of the antiviral oseltamivir (Tamiflu) administered in the early stages of S-OIV H1N1 infection was confirmed in the mouse model. Moreover, elevated levels of IL-17, Th-17 mediators and IL-17-responsive cytokines were found in serum samples of S-OIV-infected patients in Beijing. IL-17 deficiency or treatment with monoclonal antibodies against IL-17-ameliorated acute lung injury induced by the S-OIV H1N1 virus in mice. These results suggest that IL-17 plays an important role in S-OIV-induced acute lung injury and that monoclonal antibodies against IL-17 could be useful as a potential therapeutic remedy for future S-OIV H1N1 pandemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号