首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator‐mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype.  相似文献   

2.
Knowledge of the factors that limit reproduction is critical to an understanding of plant ecology, and is particularly important for predicting population viability for threatened species. Here, we investigated the pollination biology of a globally threatened plant, Polemonium vanbruntiae, using hand-pollination experiments in four natural populations to determine the degree of pollen limitation. In addition, we investigated the mating system and extent to which plants can self-fertilize by comparing geitonogamously and autonomously self-fertilized plants with purely outcrossed and open-pollinated plants. In contrast to several of the more common species of Polemonium, we found no pollen limitation in any of the four populations of P. vanbruntiae over two years. The lack of pollen limitation was best explained by the capacity for P. vanbruntiae to both geitonogamously and autonomously self-fertilize, unlike some of its more common congeners. Geitonogamously selfed flowers set equivalent numbers of seeds when compared to purely outcrossed and open-pollinated flowers. However, autonomously selfed flowers produced significantly fewer seeds, demonstrating that pollinators play an important role as inter- and intra-plant pollen vectors in this system. Our results support the reproductive assurance hypothesis, whereby the ability to self assures fertilization for plants in small populations. Self-compatibility in Polemonium vanbruntiae may decrease extinction risk of isolated populations experiencing a stochastic pollinator pool within a restricted geographic range. In addition, a mixed-mating strategy, including the ability for clonal reproduction, may explain the ability for this rare species to persist in small, fragmented populations.  相似文献   

3.
Many of the diverse animals that consume floral rewards act as efficient pollinators; however, others 'steal' rewards without 'paying' for them by pollinating. In contrast to the extensive studies of the ecological and evolutionary consequences of nectar theft, pollen theft and its implications remain largely neglected, even though it affects plant reproduction more directly. Here we review existing studies of pollen theft and find that: (1) most pollen thieves pollinate other plant species, suggesting that theft generally arises from a mismatch between the flower and thief that precludes pollen deposition, (2) bees are the most commonly documented pollen thieves, and (3) the floral traits that typically facilitate pollen theft involve either spatial or temporal separation of sex function within flowers (herkogamy and dichogamy, respectively). Given that herkogamy and dichogamy occur commonly and that bees are globally the most important floral visitors, pollen theft is likely a greatly under-appreciated component of floral ecology and influence on floral evolution. We identify the mechanisms by which pollen theft can affect plant fitness, and review the evidence for theft-induced ecological effects, including pollen limitation. We then explore the consequences of pollen theft for the evolution of floral traits and sexual systems, and conclude by identifying key directions for future research.  相似文献   

4.
1. Oviposition choices can profoundly affect offspring performance. Oviposition decisions of the dipteran pre‐dispersal seed predator, Hylemya sp. (Diptera: Anthomyiidae), when choosing among sex morphs of their host‐plant—Polemonium foliosissimum Hook—were evaluated. Polemonium foliosissimum is gynodioecious, with female and hermaphrodite sex morphs that differ in flower size. 2. It was asked: Do female flies preferentially oviposit on hermaphrodite plants and, if so, are oviposition choices correlated with flower size? Is larval survivorship higher on hermaphrodite plants and, if so, is larval success correlated with flower size? Can the differences in oviposition and/or larval success be explained by slight differences in flowering phenology between the sexes? 3. Hermaphrodite flowers received 45% more Hylemya eggs than females. Although hermaphrodites had larger petals and sepals than females, egg loads were not correlated with petal or sepal size. Larval survival was 30% greater on hermaphrodites than females and higher on plants with larger sepals. However, the difference in sepal area between genders did not fully explain larval survival differences. Egg numbers declined over weeks, but differences in egg loads between the sex morphs were not attributable to a slight phenological delay of females. Larval survival declined over the season; however, larval survival differences between sex morphs were consistent. 4. Hylemya preferentially oviposited on hermaphrodites where their larvae had a significantly greater survival rate compared with females. The present results add to the knowledge that intra‐specific choices have consequences for phytophagous insects and that the relationship between antagonists and their gynodioecious host plants is complex.  相似文献   

5.
M. Zimmerman 《Oecologia》1987,72(4):624-632
Summary Three measures of potential outbreeding efficiency were quantified throughout two flowering seasons in a population of the mass-flowering Polemonium foliosissimum: 1) the distances flown between plants by bumblebee pollinators; 2) the proximity of visited plants; and 3) the diversity of individuals visited. Results were consistent between years. Individual plants did not function differentially with respect to female (i.e., pollen receipt) and male (i.e., pollen donation) function. Both female and male components of outbreeding, as estimated by all three measures, were positively correlated with the number of flowers per plant. Significantly more outbreeding could occur during the final phase of flowering when most individuals had relatively few blossoms. Although the potential for outbreeding was the same at any time through an individual's blooming regime, individuals for which the peak of blooming occurred after the peak for the population as a whole have significantly more outbreeding potential via both female and male function. These factors may combine such that any pressure to increase outbreeding in this self-incompatible species manifests itself in directional selection for delayed flowering time.  相似文献   

6.
Nectar thieves may increase or decrease pollinator-mediated pollen flow and thus may have positive or negative effects on plant reproductive success. In temperate rainforests of South America, the hummingbird Sephanoides sephaniodes acts as both a pollinator and non-destructive nectar thief on Lapageria rosea. Although pollinators that also act as nectar thieves have the potential to significantly modify plant reproductive success, no previous study has addressed this. To determine how the mixed behaviour of S. sephanoides affects pollen flow, we experimentally exposed some flowers to nectar theft and excluded nectar thieves from other flowers. We then assessed pollen dispersal into the floral neighbourhood. Thieved flowers exported less pollen, but the pollen exported was transferred farther into the neighbourhood. Our findings indicate a trade-off between distance and amount of pollen flow.  相似文献   

7.
Sarah M. Swope 《Oecologia》2014,174(1):205-215
Herbivore damage often deters pollinator visitation and many invasive plants in North America are pollinator-dependent. This has important implications for the biological control of invasive plants because it means that agents that deter pollinators may have a larger than expected impact on the plant. Yet interactions between pollinators and biocontrol agents are rarely evaluated. Centaurea solstitialis, one of the most problematic invasive species in California, is dependent on pollinators for reproduction. I factorially manipulated infection by a biocontrol pathogen and pollen supplementation to test for (1) pollen limitation in C. solstitialis, (2) whether infection increased pollen limitation, and (3) whether this varied across a soil moisture gradient. Plants growing on north-facing slopes where soil moisture was higher experienced mild pollen limitation in the absence of the pathogen and more pronounced pollen limitation when they were infected. Plants on drier south-facing slopes did not suffer from pollen limitation but instead appeared to suffer from resource limitation. Pathogen infection directly reduced seed set in C. solstitialis by 67–72 %. On north-facing slopes, infection had an additional, indirect effect by increasing the degree of pollen limitation plants experienced. The trait that mediates this indirect pathogen–pollinator interaction is the number of inflorescences plants produced: infected plants made fewer inflorescences which led to greater pollen limitation. Although in the present study this outcome is dependent on abiotic factors that vary over small spatial scales, exploiting other invasive plants’ dependence on pollinators by selecting agents that deter visitation may enhance agent impact.  相似文献   

8.
Pollinator and/or mate scarcity affects pollen transfer, with important ecological and evolutionary consequences for plant reproduction. However, the way in which the pollen loads transported by pollinators and deposited on stigmas are affected by pollination context has been little studied. We investigated the impacts of plant mate and visiting insect availabilities on pollen transport and receipt in a mass‐flowering and facultative autogamous shrub (Rhododendron ferrugineum). First, we recorded insect visits to R. ferrugineum in plant patches of diverse densities and sizes. Second, we analyzed the pollen loads transported by R. ferrugineum pollinators and deposited on stigmas of emasculated and intact flowers, in the same patches. Overall, pollinators (bumblebees) transported much larger pollen loads than the ones found on stigmas, and the pollen deposited on stigmas included a high proportion of conspecific pollen. However, comparing pollen loads of emasculated and intact flowers indicated that pollinators contributed only half the conspecific pollen present on the stigma. At low plant density, we found the highest visitation rate and the lowest proportion of conspecific pollen transported and deposited by pollinators. By contrast, at higher plant density and lower visitation rate, pollinators deposited larger proportion of conspecific pollen, although still far from sufficient to ensure that all the ovules were fertilized. Finally, self‐pollen completely buffered the detrimental effects on pollination of patch fragmentation and pollinator failure. Our results indicate that pollen loads from pollinators and emasculated flowers should be quantified for an accurate understanding of the relative impacts of pollinator and mate limitation on pollen transfer in facultative autogamous species.  相似文献   

9.
Pollination precision and efficiency have been deemed to be important driving forces in floral evolution. Herkogamy reduction is a main mechanism to increase pollination precision. Secondary pollen presentation (SPP), by which pollen is presented on other floral organs especially pistils, has been widely accepted as a special mechanism to increase pollen transfer precision through spatial reduction of the anther–stigma distance, that is, minimized herkogamy. This overlooks a potential driving force, that is expanding the pollination niche through converting pollen thieves and nectar robbers into effective pollinators. We selected two species as study models with typical pistillate SPP, Pavetta hongkongensis Bremek. (Rubiaceae) and Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae). In both species, two distinct pollinator functional groups were recognized. Short-tongued bees and flies fed on pollen on stigmas but also stole pollen from anthers and robbed nectar, whereas long-tongued hawkmoths and butterflies only collected nectar. Emasculation had no influence on long-tongued pollinators, but significantly decreased the visitation frequency of short-tongued visitors and fruit set, compared to intact flowers, demonstrating short-tongued visitors did not effectively pollinate and acted merely as pollen thieves or nectar robbers when SPP was absent. Data from the two plant species clearly indicated pistillate SPP has additional adaptive advantages of converting ineffective visitors into pollinators and consequently widening the pollination niche, which could help plants overcome environmental stochasticity. Our results suggest that multiple selective forces drive the evolution of SPP and the minimization of herkogamy.  相似文献   

10.

Background

In plants, reproductive success is largely determined by the composition of pollen (i.e., self-pollen and outcross-pollen from near and distant pollen-donors) transported as a result of pollinator foraging behavior (e.g., pollen carryover). However, little evidence is available on how and to what extent the pollen carryover affects the pollen-donor composition and on which insect taxa are effective outcross-pollen transporters under field conditions. In this study, we explored roles of foraging behavior of insect pollinators on pollen-donor composition and subsequent reproductive success in a woody plant.

Methods

We performed paternity analyses based on microsatellite genotyping of individual pollen grains found on diurnal pollinators (i.e., bumblebee, small bee, fly, small beetle, and honeybee) visiting Castanea crenata trees.

Results

The outcross-pollen rate was highest in bumblebees (66%), followed by small bees (35%), flies (31%), and small beetles (18%). The effective number of pollen donors, representing pollen carryover, was greater in bumblebees (9.71) than in flies (3.40), small bees (3.32), and small beetles (3.06). The high percentages of pollen from outside the plot on bumblebees (65.4%) and flies (71.2%) compared to small bees (35.3%) and small beetles (13.5%) demonstrated their longer pollen dispersal distances.

Conclusions

All of the diurnal insects carried outcross-pollen grains for long distances via pollen carryover. This fact suggests that a wide range of insect taxa are potential outcross-pollen transporters for the self-incompatible C. crenata.  相似文献   

11.
Most flowers are visited by a wide range of potential pollinators. However, their efficiency in pollen removal and deposition, and other behavioural factors affecting pollination effectiveness may greatly differ among taxa, and even individuals. Fritillary (Fritillaria meleagris L., Liliaceae) is a spring-flowering, critically endangered plant in the Polish flora, red-listed in most of the European countries of its range. Based on indirect evidence, that is, body pollen loads, visitation frequency and seasonal abundance, it is estimated that its key pollinators are queen bumblebees, but, as shown in the literature, the largest Fritillaria pollen loads are carried by solitary bees. To study pollinator effectiveness for floral visitors to F. meleagris, we performed a garden experiment, where we analysed pollen deposition and assessed pollen removal per single flower-visit in the plant. Similarly to field conditions reported in the literature, our experimental plants were serviced by nectar-seeking bumblebee queens and two taxa of solitary bees, small pollen-collecting Andrena and large, nectar-seeking Anthophora males. When “quality” component was addressed, despite the character of visits, insects from all groups deposited more pollen than was found on unvisited flowers, but they did not differ significantly from each other in pollen deposition on virgin stigmas. We also found some differences in pollen removal both within- and among-visitor species and control flowers, unfortunately due to extremely high variation of the results they were all statistically insignificant. However, when “quantity” component of insect performance was concerned, we observed that over 81 % of visits were by bumblebees. Bombus queens stayed on flowers significantly less time than small Andrena individuals (13 % of recorded visits) and equally long as Anthophora males (only 6 % of visits). We conclude that although all the visitor groups can pollinate the flowers of F. meleagris, bumblebee queens indeed proved to be the most effective pollinators of the plant, when both quality and quantity components of pollination are concerned.  相似文献   

12.
Many alpine plants are predominantly outcrossing, thus plant reproductive success is highly dependent on effectiveness of pollinators. How pollinators transfer pollen from one flower to another is of great interest in understanding the genetic structure in plant populations. We studied (1) the role and effectiveness of insect visitors for pollination, and (2) their contribution as pollen vectors for gene dispersal in a Rhododendron ferrugineum population. Various insect visitors were recorded, including Hymenoptera, Diptera, Coleoptera, and Lepidoptera. The most frequent and effective insects were honey bees and bumblebees. Muscid flies were considered as important pollinators, particularly due to their relatively high visitation rate. Syrphid flies, Formicidae, and Coleoptera were ineffective in transporting pollen, while the effectiveness of Lepidoptera and Empididae was negligible. A fluorescence labelling experiment revealed that pollen dispersal was restricted (0 - 2 m) in a dense R. ferrugineum stand and decreased in a leptokurtic fashion. This might lead to geitonogamous self-pollination that could explain the close relationship between individuals found in genetic studies of R. ferrugineum. However, some pollen grains may travel 40 - 45 m, which implies the occurrence of cross-pollination through the foraging activities of bumblebees and honey bees.  相似文献   

13.
Summary Nectar-foraging pollinators often exhibit a directional pattern of movement between plants when the energetic costs of revisiting previously utilized areas can significantly reduce foraging efficiency. However, bumblebees (Bombus spp.) foraging for pollen on flowers of Aquilegia caerulea rarely moved in a straight line among successively visited plants. Most flights from plants visited were either to closely neighboring plants or were longer and involved bypassing near neighbor plants. Bees biased their flights toward plants with relatively large numbers of flowers yet visited only a small fraction of the flowers on each plant. Such foraging tactics might result when the energetic costs of revisiting plants are minor. Alternatively we suggest that bumblebees foraging for pollen may not perceive revisitations and their associated costs because they do not assess pollen returns on a per plant basis. In this case energetic-efficiency arguments predicting the pattern of foraging movements among plants may be inappropriate. A better level of analysis would be where the bees assess net energy returns, perhaps between bouts of pollen-combing and corbiculae-packing.  相似文献   

14.
This study examines the reproductive biology of Linum lewisii Pursh. (Linaceae), a polyphilic species visited by small bees and generalist flies in montane Colorado. L. lewisii plants growing at different sites experience large temporal and spatial variations in pollinator visits. Their ability to attract both dipteran and hymenopteran pollinators allows pollination under varying conditions as pollinator pool composition changes. Although L. lewisii is self-compatible, hand-pollination studies indicate that insects are required for seed production. The relative effectiveness of fly and bee pollinators is assessed in terms of per-visit pollen deposition. Insect visitation patterns are combined with per-visit effectiveness data to evaluate the relative importance of different pollinator groups. Overall, bees tend to be more effective than flies in depositing pollen. However, in many instances flies appear to be responsible for more pollen deposition due to their higher visitation rates.  相似文献   

15.
Widén B  Widén M 《Oecologia》1990,83(2):191-196
Summary Pollen movement is often restricted in natural populations, and insufficient pollination is a potential constraint on sexual reproduction in outcrossing species. Seed-set should decrease with increased distance from the pollen source in outcrossing plants. This prediction was tested using females of the clonal, gynodioecious herb Glechoma hederacea in three natural populations. In controlled pollinations, both hermaphrodites and females had similar high percentages of fruit-set and seed-set. In a natural population where a female clone was isolated from the nearest hermaphroditic clone by c. 100 m, fruit-set was low (1%). In another population where hemaphroditic clones were rare and female clones had a patchy distribution, fruit-and seed-set in females were pollen-limited and decreased with increased distance from the nearest pollen source. The estimated mean pollen dispersal distance was 5.9 m when calculated on fruit-set and 5.3 m when calculated on seed-set. The most frequent pollinators were bumblebees. The mean and median distances moved by pollinators between ramets were 0.13 m and 0.05 m. In a third population where female clones were isolated from the nearest hermaphrodites by more than 200 m, fruit-set was 0%. After introduction of 16 hermaphroditic ramets in the center of the female clone, fruit-set varied between 0% and 100% in individual female ramets. Fruit-set decreased with increased distance from the pollen source. The mean and median pollen movement distances were 1.06 m and 0.54 m.  相似文献   

16.

Background and Aims

Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees.

Methods

For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology.

Key Results

Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape.

Conclusions

Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes.  相似文献   

17.
Effective interactions between plants and pollinators are essential for the reproduction of plant species. Pollinator exclusion experiments and pollen supplementation experiments quantify the degree to which plants depend on animal pollinators and the degree to which plant reproduction is pollen limited. Pollen supplementation experiments have been conducted across the globe, but are rare in high latitude regions. To fill this knowledge gap, we experimentally investigated the dependence on animal pollinators and magnitude of pollen limitation in eight plant species north of the Arctic Circle in Lapland, Finland. Our findings show that all plant species were pollinator dependent, but not pollen limited. We discuss several mechanisms that might buffer our focal plants from pollen limitation, including plant and pollinator generalization, and attractive plant traits. Our results demonstrate that many plant species north of the Arctic Circle are currently receiving adequate pollinator service and provide a baseline for future comparisons of pollinator dependence and pollen limitation in the Arctic across space and time.  相似文献   

18.
We describe the breeding system of an autotetraploid trioecious cactus, Pachycereus pringlei, provide estimates of the fitnesses of males and females relative to that of hermaphrodites, and discuss the role played by pollinators in the maintenance of three sexual morphs. Relatively high frequencies of females (45%) and males (26%) exist in coastal desert populations around Bahia Kino, Sonora, Mexico. They differ from hermaphrodites in flower size (females only), initiation of the flowering season, number of flowers produced per night and per season, sucrose content of nectar, and, in females, number of fruits produced per season under open pollination and in response to hand-pollination. Major similarities between the sex classes include overall plant size, nectar volume per flower, percent fruit set in open-pollinated flowers of females and hermaphrodites, seed mass and number of seeds per fruit, and pollen mass per flower in males and hermaphrodites. Hermaphrodites are self-compatible, and the selfing rate is high (65%). Levels of inbreeding depression in selfed fruits and seeds appear to be low. Fruit set is strongly pollinator-dependent in females but much less so in hermaphrodites. Relative fitness of males and females, as measured by annual production of pollen or seeds, is at least 1.5 times higher than that of the corresponding sex function in hermaphrodites. Given the high selfing rate and apparent lack of inbreeding depression, these fitness differences are insufficient to explain the occurrence of trioecy in this species.  相似文献   

19.
Pollen limitation occurs when plants produce less fruits and/or seeds than they would with adequate pollen receipt. If the addition of cross-pollen to stigmas increases fruit/seed production, it is interpreted as an evidence of pollen limitation. Much of the limitation may be associated with the quality rather than quantity of pollen; however, most studies do not discriminate between the two, which may lead to misinterpretation of the results. We studied the effects of quality and quantity of pollen on the reproduction of a northern Spanish population of Crataegus monogyna. The treatments included self- and cross-pollination, and supplementation to open and bagged flowers. The response variables considered were number of pollen grains per stigma, pollen tubes per style, and initial and final fruit set. In the Cantabrian range, C. monogyna requires insect pollinators to set fruit and is partially self-incompatible. We found that the number of pollen tubes did not differ between cross- and self-pollination treatments; however, self-pollinated flowers set less fruits than flowers that received pure cross-pollen or were supplemented with both cross- and self-pollen. The experimental design allowed us to infer qualitative rather than quantitative pollen limitation. Comparison of the number of pollen grains and tubes, and initial and final fruit set among pollination treatments suggested post-zygotic embryo selection against selfed progeny.  相似文献   

20.
Nectar robbery is usually thought to impact negatively on the reproductive success of plants, but also neutral or even positive effects have been reported. Very few studies have investigated the effects of nectar robbing on the behaviour of legitimate pollinators so far. Such behavioural changes may lead to the reduction of geitonogamy or to increased pollen movement. We simulated nectar robbing in experimental sites as well as in natural populations of Aconitum napellus ssp. lusitanicum, a rare plant pollinated by long-tongued bumblebees. In an experimental setup, we removed the nectaries of 40 % of the flowers, which is similar to rates of robbing observed in wild populations. Patches of plants with experimentally robbed flowers were compared with control patches containing plants with untreated flowers. We observed pollinator behaviour, mimicked male reproductive success (pollen dispersal) using fluorescent dye, and measured female reproductive success (seed set). The main legitimate visitors were bumblebees while honeybees were often observed robbing nectar. They did so by “base working”, i.e. sliding between tepals. Bumblebees tended to visit fewer flowers per plant and spent less time per single flower when these had been experimentally robbed. This change in behaviour consequently increased the proportion of flowers visited by bumblebees in patches with robbed flowers. Fluorescent dye mimicking pollen flow was dispersed larger distances after pollinators had visited patches with robbed flowers compared to control patches. Average seed set per plant was not affected by nectar robbing. Our results demonstrated that A. napellus does not suffer from nectar robbery but may rather benefit via improved pollen dispersal and thus, male reproductive success. Knowledge on such combined effects of behavioural changes of pollinators due to nectar robbery is important to understand the evolutionary significance of exploiters of such mutualistic relationships between plants and their pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号