首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zinc, a metal ion that functions in a wide variety of catalytic and structural sites in metalloproteins, is shown here to adopt a novel coordination environment in the Escherichia coli transport protein ZntA. The ZntA protein is a P-type ATPase that pumps zinc out of the cytoplasm and into the periplasm. It is physiologically selective for Zn(II) and functions with metalloregulatory proteins in the cell to keep the zinc quota within strict limits. Yet, the N-terminal cytoplasmic domain contains a region that is highly homologous to the yeast Cu(I) metallochaperone Atx1. To investigate how the structure of this region may influence its function, this fragment, containing residues 46-118, has been cloned out of the gene and overexpressed. We report here the solution structure of this fragment as determined by NMR. Both the apo and Zn(II)-ZntA(46-118) structures have been determined. It contains a previously unknown protein coordination site for zinc that includes two cysteine residues, Cys59 and Cys62, and a carboxylate residue, Asp58. The solvent accessibility of this site is also remarkably high, a feature that increasingly appears to be a characteristic of domains of heavy metal ion transport proteins. The participation of Asp58 in this ZntA metal ion binding site may play an important role in modulating the relative affinities and metal exchange rates for Zn(II)/Pb(II)/Cd(II) as compared with other P-type ATPases, which are selective for Cu(I) or Ag(I).  相似文献   

2.
3.
We have investigated the availability of zinc in the periplasmic space of Escherichia coli using a mutant Cu,Zn superoxide dismutase whose dimerization is triggered by zinc binding. This mutant enzyme accumulates in the monomeric form when wild type cells are grown in minimal medium, but assembles in the dimeric form when it is produced in the same medium by a mutant strain lacking the periplasmic zinc metallochaperone ZnuA. These results indicate that periplasmic zinc-containing proteins compete for metal binding when bacteria grow in environments where this element is present in traces. The effective ZnuA ability to sequester the available zinc ions from the periplasm suggests that zinc-containing cytoplasmic proteins are more important for bacterial viability than the periplasmic ones.  相似文献   

4.
The crystal structure of the iron-free (apo) form of the Haemophilus influenzae Fe(3+)-binding protein (hFbp) has been determined to 1.75 A resolution. Information from this structure complements that derived from the holo structure with respect to the delineation of the process of iron binding and release. A 21 degrees rotation separates the two structural domains when the apo form is compared with the holo conformer, indicating that upon release of iron, the protein undergoes a change in conformation by bending about the central beta-sheet hinge. A surprising finding in the apo-hFbp structure was that the ternary binding site anion, observed in the crystals as phosphate, remained bound. In solution, apo-hFbp bound phosphate with an affinity K(d) of 2.3 x 10(-3) M. The presence of this ternary binding site anion appears to arrange the C-terminal iron-binding residues conducive to complementary binding to Fe(3+), while residues in the N-terminal binding domain must undergo induced fit to accommodate the Fe(3+) ligand. These observations suggest a binding process, the first step of which is the binding of a synergistic anion such as phosphate to the C-terminal domain. Next, iron binds to the preordered half-site on the C-terminal domain. Finally, the presence of iron organizes the N-terminal half-site and closes the interdomain hinge. The use of the synergistic anion and this iron binding process results in an extremely high affinity of the Fe(3+)-binding proteins for Fe(3+) (nFbp K'(eff) = 2.4 x 10(18) M(-1)). This high-affinity ligand binding process is unique among the family of bacterial periplasmic binding proteins and has interesting implications in the mechanism of iron removal from the Fe(3+)-binding proteins during FbpABC-mediated iron transport across the cytoplasmic membrane.  相似文献   

5.
The Escherichia coli Ada protein repairs O6-methylguanine residues and methyl phosphotriesters in DNA by direct transfer of the methyl group to a cysteine residue located in its C- or N-terminal domain, respectively. Methyl transfer to the N-terminal domain causes it to acquire a sequence-specific DNA binding activity, which directs binding to the regulatory region of several methylation-resistance genes. In this paper we show that the N-terminal domain of Ada contains a high-affinity binding site for a single zinc atom, whereas the C-terminal domain is free of zinc. The metal-binding domain is apparently located within the first 92 amino acids of Ada, which contains four conserved cysteine residues. We propose that these four cysteines serve as the zinc ligand residues, coordinating the metal in a tetrahedral arrangement. One of the putative ligand residues, namely, Cys69, also serves as the acceptor site for a phosphotriester-derived methyl group. This raises the possibility that methylation-dependent ligand reorganization about the metal plays a role in the conformational switching mechanism that converts Ada from a non-sequence-specific to a sequence-specific DNA-binding protein.  相似文献   

6.
In-cell NMR allows characterizing the folding state of a protein as well as posttranslational events at molecular level, in the cellular context. Here, the initial maturation steps of human copper, zinc superoxide dismutase 1 are characterized in the E. coli cytoplasm by in-cell NMR: from the apo protein, which is partially unfolded, to the zinc binding which causes its final quaternary structure. The protein selectively binds only one zinc ion, whereas in vitro also the copper site binds a non-physiological zinc ion. However, no intramolecular disulfide bridge formation occurs, nor copper uptake, suggesting the need of a specific chaperone for those purposes.  相似文献   

7.
Botulinum neurotoxin serotype B is a zinc protease that disrupts neurotransmitter release by cleaving synaptobrevin-II (Sb2), one of three SNARE proteins involved in neuronal synaptic vesicle fusion. The three-dimensional crystal structure of the apo botulinum neurotoxin serotype B catalytic domain (BoNT/B-LC) has been determined to 2.2 A resolution, and the complex of cleaved Sb2 with the catalytic domain (Sb2-BoNT/B-LC) has been determined to 2.0 A resolution. A comparison of the holotoxin catalytic domain and the isolated BoNT/B-LC structure shows a rearrangement of three active site loops. This rearrangement exposes the BoNT/B active site. The Sb2-BoNT/B-LC structure illustrates two distinct binding regions, which explains the specificity of each botulinum neurotoxin for its synaptic vesicle protein. This observation provides an explanation for the proposed cooperativity between binding of full-length substrate and catalysis and suggest a mechanism of synaptobrevin proteolysis employed by the clostridial neurotoxins.  相似文献   

8.
J P Beltzer  M Spiess 《The EMBO journal》1991,10(12):3735-3742
The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors.  相似文献   

9.
10.
CLIP-170 is a plus-end tracking protein which may act as an anticatastrophe factor. It has been proposed to mediate the association of dynein/dynactin to microtubule (MT) plus ends, and it also binds to kinetochores in a dynein/dynactin-dependent fashion, both via its C-terminal domain. This domain contains two zinc finger motifs (proximal and distal), which are hypothesized to mediate protein-protein interactions. LIS1, a protein implicated in brain development, acts in several processes mediated by the dynein/dynactin pathway by interacting with dynein and other proteins. Here we demonstrate colocalization and direct interaction between CLIP-170 and LIS1. In mammalian cells, LIS1 recruitment to kinetochores is dynein/dynactin dependent, and recruitment there of CLIP-170 is dependent on its site of binding to LIS1, located in the distal zinc finger motif. Overexpression of CLIP-170 results in a zinc finger-dependent localization of a phospho-LIS1 isoform and dynactin to MT bundles, raising the possibility that CLIP-170 and LIS1 regulate dynein/dynactin binding to MTs. This work suggests that LIS1 is a regulated adapter between CLIP-170 and cytoplasmic dynein at sites involved in cargo-MT loading, and/or in the control of MT dynamics.  相似文献   

11.
The Escherichia coli histidine binding protein HisJ is a type II periplasmic binding protein (PBP) that preferentially binds histidine and interacts with its cytoplasmic membrane ABC transporter, HisQMP2, to initiate histidine transport. HisJ is a bilobal protein where the larger Domain 1 is connected to the smaller Domain 2 via two linking strands. Type II PBPs are thought to undergo “Venus flytrap” movements where the protein is able to reversibly transition from an open to a closed conformation. To explore the accessibility of the closed conformation to the apo state of the protein, we performed a set of all‐atom molecular dynamics simulations of HisJ starting from four different conformations: apo‐open, apo‐closed, apo‐semiopen, and holo‐closed. The simulations reveal that the closed conformation is less dynamic than the open one. HisJ experienced closing motions and explored semiopen conformations that reverted to closed forms resembling those found in the holo‐closed state. Essential dynamics analysis of the simulations identified domain closing/opening and twisting as main motions. The formation of specific inter‐hinge strand and interdomain polar interactions contributed to the adoption of the closed apo‐conformations although they are up to 2.5‐fold less prevalent compared with the holo‐closed simulations. The overall sampling of the closed form by apo‐HisJ provides a rationale for the binding of unliganded PBPs with their cytoplasmic membrane ABC transporters. Proteins 2014; 82:386–398. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The crystal structure of a ternary complex of the alcohol dehydrogenase from the archaeon Sulfolobus solfataricus (SsADH) has been determined at 2.3 A. The asymmetric unit contains a dimer with a NADH and a 2-ethoxyethanol molecule bound to each subunit. The comparison with the apo structure of the enzyme reveals that this medium chain ADH undergoes a substantial conformational change in the apo-holo transition, accompanied by loop movements at the domain interface. The extent of domain closure is similar to that observed for the classical horse liver ADH, although some differences are found which can be related to the different oligomeric states of the enzymes. Compared to its apo form, the SsADH ternary complex shows a change in the ligation state of the active site zinc ion which is no longer bound to Glu69, providing additional evidence of the dynamic role played by the conserved glutamate residue in ADHs. In addition, the structure presented here allows the identification of the substrate site and hence of the residues that are important in the binding of both the substrate and the coenzyme.  相似文献   

13.
14.
15.
Allen S  Badarau A  Dennison C 《Biochemistry》2012,51(7):1439-1448
The delivery of copper by the human metallochaperone CCS is a key step in the activation of Cu,Zn-superoxide dismutase (SOD1). CCS is a three-domain protein with Cu(I)-binding CXXC and CXC motifs in domains 1 and 3, respectively. A detailed analysis of the binding of copper to CCS, including variants in which the Cys residues from domains 1 and 3 have been mutated to Ser, and also using separate domain 1 and 3 constructs, demonstrates that CCS is able to bind 1 equiv of Cu(I) in both of these domains. The Cu(I) affinity of domain 1 is approximately 5 × 10(17) M(-1) at pH 7.5, while that of domain 3 is at least 1 order of magnitude weaker. The CXXC site will therefore be preferentially loaded with Cu(I), suggesting that domain 1 plays a role in the acquisition of the metal. The delivery of copper to the target occurs via domain 3 whose structural flexibility and ability to be transiently metalated during copper delivery appear to be more important than the Cu(I) affinity of its CXC motif. The Cu(I) affinity of domain 1 of CCS is comparable to that of HAH1, another cytosolic copper metallochaperone. CCS and HAH1 readily exchange Cu(I), providing a mechanism whereby cross-talk can occur between copper trafficking pathways.  相似文献   

16.
Eukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner. The structure of PhNob1 solved by nuclear magnetic resonance spectroscopy revealed a PIN domain common with many nucleases and a zinc ribbon domain, which are structurally connected by a flexible linker. We show that amino acid residues required for substrate binding reside in the PIN domain whereas the zinc ribbon domain alone is sufficient to bind helix 40 of the small subunit rRNA. This suggests that the zinc ribbon domain acts as an anchor point for the protein on the nascent subunit positioning it in the proximity of the cleavage site.  相似文献   

17.
The E6 protein of human papillomavirus 16 is known to be difficult and, when overexpressed, insoluble and agglomerated. It has two putative zinc ion binding sites crucial for its function. No metallochaperone has yet been found to deliver zinc ions to the E6 protein. Here, we report that a specific chelating agent, which we think functionally mimics a metallochaperone, stabilized the soluble monomeric form of E6 and inhibited multimerization in vitro. This effect seemed to depend on the chelating strength of the agent. While strong chelating agents precipitated the E6 protein and weak chelating agents did not favor the monomeric form of E6, chelating agents of intermediate strength [L-penicillamine and ethylene glycol bis(beta-aminoethyl)-N,N,N',N'-tetraacetic acid (EGTA)] effectively support the formation of a monomer. We did not observe formation of a dimer or defined oligomers. Degradation assays imply that the monomer is the biologically active form of the protein. Since EGTA favors the formation of monomeric over agglomerated E6 protein, we propose that chelating agents of appropriate strength could assist zinc delivery to recombinant metalloproteins in vitro and may even destabilize existing agglomerates.  相似文献   

18.
19.
20.
Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X‐ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site‐directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号