首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Congenital myasthenic syndromes (CMSs) stem from genetic defects in endplate (EP)-specific presynaptic, synaptic, and postsynaptic proteins. The postsynaptic CMSs identified to date stem from a deficiency or kinetic abnormality of the acetylcholine receptor (AChR). All CMSs with a kinetic abnormality of AChR, as well as many CMSs with a deficiency of AChR, have been traced to mutations in AChR-subunit genes. However, in a subset of patients with EP AChR deficiency, the genetic defect has remained elusive. Rapsyn, a 43-kDa postsynaptic protein, plays an essential role in the clustering of AChR at the EP. Seven tetratricopeptide repeats (TPRs) of rapsyn subserve self-association, a coiled-coil domain binds to AChR, and a RING-H2 domain associates with beta-dystroglycan and links rapsyn to the subsynaptic cytoskeleton. Rapsyn self-association precedes recruitment of AChR to rapsyn clusters. In four patients with EP AChR deficiency but with no mutations in AChR subunits, we identify three recessive rapsyn mutations: one patient carries L14P in TPR1 and N88K in TPR3; two are homozygous for N88K; and one carries N88K and 553ins5, which frameshifts in TPR5. EP studies in each case show decreased staining for rapsyn and AChR, as well as impaired postsynaptic morphological development. Expression studies in HEK cells indicate that none of the mutations hinders rapsyn self-association but that all three diminish coclustering of AChR with rapsyn.  相似文献   

2.
In slow-channel congenital myasthenic syndrome, point mutations of the endplate acetylcholine receptor (AChR) prolong channel openings, leading to excessive Ca(2+) entry with ensuing endplate degeneration and myasthenic symptoms. The Ca(2+) permeability of the human endplate AChR-channel is quite high, and is further increased by two slow-channel mutations in its ? subunit, worsening the pathological cascade. To gain further support to the hypothesis that the ? subunit plays a crucial role in controlling Ca(2+) permeability of endplate AChR-channel, in this work we measured the fractional Ca(2+) current (P(f), i.e., the percentage of the total current carried by Ca(2+) ions) of a panel of AChR carrying slow-channel mutations in the α, β and ? subunits detected in patients (α(N217K), α(S226Y), α(C418W), β(V266A), β(V266M), ?(I257F), ?(V265A) and ?(L269F)). We confirm that only mutations in the ? subunit altered Ca(2+) permeability of AChR-channels, with ?(L269F) increasing P(f) (10% vs. 7% of wild type AChR) and ?(I257F) decreasing it (to 4.6%). We also found that, for ?(L269F)-AChR, the Ca(2+) permeability and ACh-induced cell death can be normalized by clinically relevant concentrations of salbutamol or verapamil, providing the first evidence that the Ca(2+) permeability of AChR-channels can be modulated and this treatment may provide protection against excitotoxic insults.  相似文献   

3.
Escobar syndrome is a form of arthrogryposis multiplex congenita and features joint contractures, pterygia, and respiratory distress. Similar findings occur in newborns exposed to nicotinergic acetylcholine receptor (AChR) antibodies from myasthenic mothers. We performed linkage studies in families with Escobar syndrome and identified eight mutations within the gamma -subunit gene (CHRNG) of the AChR. Our functional studies show that gamma -subunit mutations prevent the correct localization of the fetal AChR in human embryonic kidney-cell membranes and that the expression pattern in prenatal mice corresponds to the human clinical phenotype. AChRs have five subunits. Two alpha, one beta, and one delta subunit are always present. By switching gamma to epsilon subunits in late fetal development, fetal AChRs are gradually replaced by adult AChRs. Fetal and adult AChRs are essential for neuromuscular signal transduction. In addition, the fetal AChRs seem to be the guide for the primary encounter of axon and muscle. Because of this important function in organogenesis, human mutations in the gamma subunit were thought to be lethal, as they are in gamma -knockout mice. In contrast, many mutations in other subunits have been found to be viable but cause postnatally persisting or beginning myasthenic syndromes. We conclude that Escobar syndrome is an inherited fetal myasthenic disease that also affects neuromuscular organogenesis. Because gamma expression is restricted to early development, patients have no myasthenic symptoms later in life. This is the major difference from mutations in the other AChR subunits and the striking parallel to the symptoms found in neonates with arthrogryposis when maternal AChR auto-antibodies crossed the placenta and caused the transient inactivation of the AChR pathway.  相似文献   

4.
Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed whole-exome sequencing to determine the underlying defect in a group of individuals with an inherited limb-girdle pattern of myasthenic weakness. We identify DPAGT1 as a gene in which mutations cause a congenital myasthenic syndrome. We describe seven different mutations found in five individuals with DPAGT1 mutations. The affected individuals share a number of common clinical features, including involvement of proximal limb muscles, response to treatment with cholinesterase inhibitors and 3,4-diaminopyridine, and the presence of tubular aggregates in muscle biopsies. Analyses of motor endplates from two of the individuals demonstrate a severe reduction of endplate acetylcholine receptors. DPAGT1 is an essential enzyme catalyzing the first committed step of N-linked protein glycosylation. Our findings underscore the importance of N-linked protein glycosylation for proper functioning of the neuromuscular junction. Using the DPAGT1-specific inhibitor tunicamycin, we show that DPAGT1 is required for efficient glycosylation of acetylcholine-receptor subunits and for efficient export of acetylcholine receptors to the cell surface. We suggest that the primary pathogenic mechanism of DPAGT1 mutations is reduced levels of acetylcholine receptors at the endplate region. These individuals share clinical features similar to those of congenital myasthenic syndrome due to GFPT1 mutations, and their disorder might be part of a larger subgroup comprising the congenital myasthenic syndromes that result from defects in the N-linked glycosylation pathway and that manifest through impaired neuromuscular transmission.  相似文献   

5.
Impaired fetal movement causes malformations, summarized as fetal akinesia deformation sequence (FADS), and is triggered by environmental and genetic factors. Acetylcholine receptor (AChR) components are suspects because mutations in the fetally expressed gamma subunit (CHRNG) of AChR were found in two FADS disorders, lethal multiple pterygium syndrome (LMPS) and Escobar syndrome. Other AChR subunits alpha1, beta1, and delta (CHRNA1, CHRNB1, CHRND) as well as receptor-associated protein of the synapse (RAPSN) previously revealed missense or compound nonsense-missense mutations in viable congenital myasthenic syndrome; lethality of homozygous null mutations was predicted but never shown. We provide the first report to our knowledge of homozygous nonsense mutations in CHRNA1 and CHRND and show that they were lethal, whereas novel recessive missense mutations in RAPSN caused a severe but not necessarily lethal phenotype. To elucidate disease-associated malformations such as frequent abortions, fetal edema, cystic hygroma, or cardiac defects, we studied Chrna1, Chrnb1, Chrnd, Chrng, and Rapsn in mouse embryos and found expression in skeletal muscles but also in early somite development. This indicates that early developmental defects might be due to somite expression in addition to solely muscle-specific effects. We conclude that complete or severe functional disruption of fetal AChR causes lethal multiple pterygium syndrome whereas milder alterations result in fetal hypokinesia with inborn contractures or a myasthenic syndrome later in life.  相似文献   

6.
We describe a severe form of congenital myasthenic syndrome (CMS) caused by two heteroallelic mutations: a nonsense and a missense mutation in the gene encoding agrin (AGRN). The identified mutations, Q353X and V1727F, are located at the N-terminal and at the second laminin G-like (LG2) domain of agrin, respectively. A motor-point muscle biopsy demonstrated severe disruption of the architecture of the neuromuscular junction (NMJ), including: dispersion and fragmentation of endplate areas with normal expression of acetylcholinesterase; simplification of postsynaptic membranes; pronounced reduction of the axon terminal size; widening of the primary synaptic cleft; and, collection of membranous debris material in the primary synaptic cleft and in the subsynaptic cytoplasm. Expression studies in heterologous cells revealed that the Q353X mutation abolished expression of full-length agrin. Moreover, the V1727F mutation decreased agrin-induced clustering of the acetylcholine receptor (AChR) in cultured C2 muscle cells by >100-fold, and phosphorylation of the MuSK receptor and AChR beta subunit by ~tenfold. Surprisingly, the V1727F mutant also displayed increased binding to α-dystroglycan but decreased binding to a neural (z+) agrin-specific antibody. Our findings demonstrate that agrin mutations can associate with a severe form of CMS and cause profound distortion of the architecture and function of the NMJ. The impaired ability of V1727F agrin to activate MuSK and cluster AChRs, together with its increased affinity to α-dystroglycan, mimics non-neural (z-) agrin and are important determinants of the pathogenesis of the disease.  相似文献   

7.
The neuromuscular junction (NMJ) is a complex structure that efficiently communicates the electrical impulse from the motor neuron to the skeletal muscle to induce muscle contraction. Genetic and autoimmune disorders known to compromise neuromuscular transmission are providing further insights into the complexities of NMJ function. Congenital myasthenic syndromes (CMSs) are a genetically and phenotypically heterogeneous group of rare hereditary disorders affecting neuromuscular transmission. The understanding of the molecular basis of the different types of CMSs has evolved rapidly in recent years. Mutations were first identified in the subunits of the nicotinic acetylcholine receptor (AChR), but now mutations in ten different genes - encoding post-, pre- or synaptic proteins - are known to cause CMSs. Pathogenic mechanisms leading to an impaired neuromuscular transmission modify AChRs or endplate structure or lead to decreased acetylcholine synthesis and release. However, the genetic background of many CMS forms is still unresolved. A precise molecular classification of CMS type is of paramount importance for the diagnosis, counselling and therapy of a patient, as different drugs may be beneficial or deleterious depending on the molecular background of the particular CMS.  相似文献   

8.
Congenital myasthenic syndromes (CMS) are inborn disorders due to presynaptic, synaptic, or postsynaptic defects of neuromuscular transmission. Some previously described kinships with typical signs of CMS showed a marked deficiency of acetylcholine receptors (AChR) and utrophin at the neuromuscular junctions. Additionally, the end-plate ultrastructure was immature, with reduced enfolding of the postsynaptic membrane. In two such families, we found truncating mutations of the epsilon-AChR subunit. In family 1, both affected siblings were heteroallelic for a epsilon911delT and a epsilonIVS4+1G-->A mutation within the AChR epsilon-subunit gene (CHRNE). In the affected member of family 2, a epsilon1030delC mutation and a previously described epsilonR64X mutation were found. These deleterious epsilonAChR mutations not only result in AChR deficiency, but also affect end-plate maturation, including the formation of secondary synaptic clefts during ontogenesis.  相似文献   

9.
Engel  Andrew G.  Ohno  Kinji  Sine  Steven M. 《Brain Cell Biology》2003,32(5-8):1017-1037
The neuromuscular junction (NMJ) has served as a prototype for understanding mechanisms underlying synaptic transmission over the past 50 years. More recently, analysis of congenital myasthenic syndromes (CMS) revealed a diverse array of molecular targets and delineated their contributions to synaptic function. Clinical, electrophysiologic and morphologic studies have paved the way for detecting CMS-related mutations in proteins such as choline acetyltransferase acetylcholinesterase, the acetylcholine receptor, rapsyn, and the voltage-gated sodium channel of the Nav1.4 type. Further studies of the mutant proteins have allowed us to correlate the effects of the mutations with predicted alterations in protein structure. In this review, we focus on the symptomatology of the CMS, consider the factors that impair neuromuscular transmission, survey the mutations that have been uncovered in the different synaptic proteins, and consider the functional implications of the identified mutations.  相似文献   

10.
We describe the genetic and kinetic defects in a congenital myasthenic syndrome due to the mutation epsilonA411P in the amphipathic helix of the acetylcholine receptor (AChR) epsilon subunit. Myasthenic patients from three unrelated families are either homozygous for epsilonA411P or are heterozygous and harbor a null mutation in the second epsilon allele, indicating that epsilonA411P is recessive. We expressed human AChRs containing wild-type or A411P epsilon subunits in 293HEK cells, recorded single channel currents at high bandwidth, and determined microscopic rate constants for individual channels using hidden Markov modeling. For individual wild-type and mutant channels, each rate constant distributes as a Gaussian function, but the spread in the distributions for channel opening and closing rate constants is greatly expanded by epsilonA411P. Prolines engineered into positions flanking residue 411 of the epsilon subunit greatly increase the range of activation kinetics similar to epsilonA411P, whereas prolines engineered into positions equivalent to epsilonA411 in beta and delta subunits are without effect. Thus, the amphipathic helix of the epsilon subunit stabilizes the channel, minimizing the number and range of kinetic modes accessible to individual AChRs. The findings suggest that analogous stabilizing structures are present in other ion channels, and possibly allosteric proteins in general, and that they evolved to maintain uniformity of activation episodes. The findings further suggest that the fundamental gating mechanism of the AChR channel can be explained by a corrugated energy landscape superimposed on a steeply sloped energy well.  相似文献   

11.
12.
The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals.  相似文献   

13.
Congenital myasthenic syndromes are caused by mutations in molecules expressed at the neuromuscular junction. Collagen Q (ColQ) makes a triple helical structure and anchors the catalytic subunit of acetylcholinesterase (AChE) to the synaptic basal lamina in the form of asymmetric AChE. Mutations in the collagen Q gene (COLQ) cause endplate AChE deficiency. As an initial step to develop a novel therapeutic strategy for endplate acetylcholinesterase deficiency, we expressed AChE species in cultured cells using retrovirus and adeno-associated virus (AAV). The retroviral vectors carried human ACHE and COLQ either in a single construct (EF1alpha-ACHE-IRES-COLQ) or in two separate constructs (EF1alpha-ACHE and EF1alpha-COLQ). We produced high-titer retroviruses using the PLAT-E retrovirus packaging cells. We also confirmed expression of asymmetric AChE in the PLAT-E cells. We infected NIH3T3 and confirmed expression of the transgenes by RT-PCR. The AAV vector carried human COLQ-IRES-EGFP downstream of the CMV promoter (pAAV-CMV-COLQ-IRES-EGFP). We produced recombinant AAV using HEK293 cells carrying pDF6 encoding the AAV6 capsid gene. We infected AAVHT1080 cells and confirmed expression of COLQ by RT-PCR and EGFP by flow cytometry. We are currently trying to achieve further higher expression levels of transgenes in cultured cells to make the current strategy applicable to an animal model.  相似文献   

14.
The molecular determinants that govern nicotinic acetylcholine receptor (AChR) assembly and trafficking are poorly defined, and those identified operate largely during initial receptor biogenesis in the endoplasmic reticulum. To identify determinants that regulate later trafficking steps, we performed an unbiased screen using chimeric proteins consisting of CD4 fused to the muscle AChR subunit cytoplasmic loops. In C2 mouse muscle cells, we found that CD4-β and δ subunit loops were expressed at very low levels on the cell surface, whereas the other subunit loops were robustly expressed on the plasma membrane. The low surface expression of CD4-β and δ loops was due to their pronounced retention in the Golgi apparatus and also to their rapid internalization from the plasma membrane. Both retention and recovery were mediated by the proximal 25–28 amino acids in each loop and were dependent on an ordered sequence of charged and hydrophobic residues. Indeed, βK353L and δK351L mutations increased surface trafficking of the CD4-subunit loops by >6-fold and also decreased their internalization from the plasma membrane. Similarly, combined βK353L and δK351L mutations increased the surface levels of assembled AChR expressed in HEK cells to 138% of wild-type levels. This was due to increased trafficking to the plasma membrane and not decreased AChR turnover. These findings identify novel Golgi retention signals in the β and δ subunit loops that regulate surface trafficking of assembled AChR and may help prevent surface expression of unassembled subunits. Together, these results define molecular determinants that govern a Golgi-based regulatory step in nicotinic AChR trafficking.  相似文献   

15.
16.
Congenital myasthenic syndromes (CMS) are rare genetic diseases affecting the neuromuscular junction (NMJ) and are characterized by a dysfunction of the neurotransmission. They are heterogeneous at their pathophysiological level and can be classified in three categories according to their presynaptic, synaptic and postsynaptic origins. We report here the first case of a human neuromuscular transmission dysfunction due to mutations in the gene encoding a postsynaptic molecule, the muscle-specific receptor tyrosine kinase (MuSK). Gene analysis identified two heteroallelic mutations, a frameshift mutation (c.220insC) and a missense mutation (V790M). The muscle biopsy showed dramatic pre- and postsynaptic structural abnormalities of the neuromuscular junction and severe decrease in acetylcholine receptor (AChR) epsilon-subunit and MuSK expression. In vitro and in vivo expression experiments were performed using mutant MuSK reproducing the human mutations. The frameshift mutation led to the absence of MuSK expression. The missense mutation did not affect MuSK catalytic kinase activity but diminished expression and stability of MuSK leading to decreased agrin-dependent AChR aggregation, a critical step in the formation of the neuromuscular junction. In electroporated mouse muscle, overexpression of the missense mutation induced, within a week, a phenotype similar to the patient muscle biopsy: a severe decrease in synaptic AChR and an aberrant axonal outgrowth. These results strongly suggest that the missense mutation, in the presence of a null mutation on the other allele, is responsible for the dramatic synaptic changes observed in the patient.  相似文献   

17.
We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) α subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing αN217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use single channel kinetic analysis to show that the prolonged activation episodes result primarily from slowing of the rate of acetylcholine (ACh) dissociation from the binding site. Rate constants for channel opening and closing are also slowed but to much smaller extents. The rate constants derived from kinetic analysis also describe the concentration dependence of receptor activation, revealing a 20-fold shift in the EC50 to lower agonist concentrations for αN217K. The apparent affinity of ACh binding, measured by competition against the rate of 125I-α-bungarotoxin binding, is also enhanced 20-fold by αN217K. Both the slowing of ACh dissociation and enhanced apparent affinity are specific to the lysine substitution, as the glutamine and glutamate substitutions have no effect. Substituting lysine for the equivalent asparagine in the β, ε, or δ subunits does not affect the kinetics of receptor activation or apparent agonist affinity. The results show that a mutation in the amino-terminal portion of the M1 domain produces a localized perturbation that stabilizes agonist bound to the resting state of the AChR.  相似文献   

18.
19.
Congenital myasthenic syndromes (CMS) are a heterogeneous group of diseases caused by genetic defects affecting neuromuscular transmission. The causal mutations have been described in number of cases. The slow channel myasthenic syndrome (slow-channel-CMS) results in a marked prolongation of channel opening in stimulated receptors (nAChR) and the end plate acetylcholinesterase (AChE) deficiency congenital myasthenic syndrome (ColQ-CMS) results in an increased action of acetylcholine (ACh) at the synapse. Anticholinesterase medication is detrimental in these cases. The successful treatment of slow-channel-CMS patients with the antidepressant serotonin re-uptake inhibitor fluoxetine has been reported. At high concentration it has a non-depolarizing effect on nicotinic receptors. This led us to the idea that fluoxetine could protect AChR from a relative excess of ACh. We investigated the possible use of fluoxetine as treatment in the AChE KO mouse. Treatment at 6mg/kg from 3 weeks to 2 months increased slightly the daily weight gain but not the final weight at 2 months in AChE-/- mice. Isometric force production of Tibialis anterior in response to electric nerve stimulation was measured in situ in AChE-/- and wild type mice treated or not by fluoxetine. The results show that the maximum twitch force in response to a single nerve stimulation, the maximal tetanic force (P0) in response to repetitive nerve stimulation and the tetanic fade are not changed in AChE-/- mice treated with fluoxetine versus control AChE-/- mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号