首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. 5054 adult beetles of 144 species were collected in a total of 696 1‐m2 collecting trays by knockdown insecticide fogging of 36 different oak trees in closed canopy woodland at Richmond Park, U.K., with three of the trees sampled on each of 12 dates, at 2‐ to 3‐week intervals, between April and October 1984. 2. In late spring (April/May), more individuals and species of beetles were collected in trays close to the trunks of trees than in trays more distant from the trunk. The reverse was the case in late September/October. Neither pattern prevailed in the intervening months. 3. Individual species exhibited a variety of patterns, with some species more abundant near the trunk, e.g. Leiopus nebulosus (L.), Strophosoma melanogrammum (Forster), Cylindronotus laevioctostriatus (Goeze), and Dromius agilis (Fabricius), and some less abundant near the trunk, e.g. Curculio pyrrhoceras (Marsham) and Rhynchaenus signifer (Creutzer). For Adalia decempunctata (L.), this preference changed with season. The observed species preferences for parts of a tree crown near or distant from the main trunk are discussed with reference to their known biologies. 4. No pronounced pattern of preference for north‐ or south‐facing aspects of trees in closed canopy woodland was observed, however populations of some species exhibited patterns of within‐tree distribution that correlate with compass angle; for one species, the ladybird Adalia decempunctata, this distribution changed with season and between colour morphs.  相似文献   

2.
  • Epiphytes offer an appealing framework to disentangle the contributions of chance, biotic and abiotic drivers of species distributions. In the context of the stress-gradient theory, we test the hypotheses that (i) deterministic (i.e., non-random) factors play an increasing role in communities from young to old trees, (ii) negative biotic interactions increase on older trees and towards the tree base, and (iii) positive interactions show the reverse pattern.
  • Bryophyte species distributions and abiotic conditions were recorded on a 1.1 ha tropical rainforest canopy crane site. We analysed co-occurrence patterns in a niche modelling framework to disentangle the roles of chance, abiotic factors and putative biotic interactions among species pairs.
  • 76% of species pairs resulted from chance. Abiotic factors explained 78% of non-randomly associated species pairs, and co-occurrences prevailed over non-coincidences in the remaining species pairs. Positive and negative interactions mostly involved species pairs from the same versus different communities (mosses versus liverworts) and life forms, respectively. There was an increase in randomly associated pairs from large to small trees. No increase in negative interactions from young to old trees or from the canopy to the base was observed.
  • Our results suggest that epiphytic bryophyte community composition is primarily driven by environmental filtering, whose importance increases with niche complexity and diversity. Biotic interactions play a secondary role, with a very marginal contribution of competitive exclusion. Biotic interactions vary among communities (mosses versus liverworts) and life forms, facilitation prevailing among species from the same community and life form, and competition among species from different communities and life forms.
  相似文献   

3.
ABSTRACT.
  • 1 A comparison was made of the insect fauna on paired Terminalia sericea, Burkea africana and Ochna pulchra trees; one tree in each pair was treated with Formex® to exclude ants from the canopy, and the other was designated the control.
  • 2 Treatment with Formex banding to exclude ants did not influence plant phenology.
  • 3 Pyrethrum knockdown samples from control trees had generally more insect individuals and insect species than samples from trees where ants were excluded.
  • 4 Formex-treated trees had significantly less homopterous individuals and species than the control trees.
  • 5 With the exception of ants and Homoptera, there was no difference in the insect guild composition and dominance ranking of various insect taxa, sampled by pyrethrum knockdown, between the control and Formex-treated trees.
  • 6 T.sericea had significantly greater populations of both sessile and mobile Homoptera on the control trees than on the Formex-treated trees. A similar trend could be seen on B.africana. There were significantly more sessile homopterans on the control trees of O.pulchra than on the Formex-treated trees. Low numbers of mobile Homoptera were recorded on both control and Formex-treated O.pulchra trees, and numbers on control trees were fewer in comparison to numbers of mobile Homoptera on control T.sericea and B.africana trees.
  • 7 It is concluded that the ants have similar effects on the insect communities of trees in a natural, undisturbed savanna as has been demonstrated on trees in agro-ecosystems, and on plants that are structurally adapted for mutualistic associations with ants.
  • 8 Although slight, leaf damage by some leaf-feeding insects was greater on trees where ants had been excluded than on control trees that supported foraging ant populations.
  相似文献   

4.
Abstract.
  • 1 To determine if trees in urban or ornamental plantings are more susceptible to attack and receive more damage to foliage by herbivores than trees in natural forests, we compared the amount of leaf damage caused by several guilds of insects feeding on seven species of native, broadleaf trees in two geographic locations.
  • 2 Total leaf damage did not differ significantly between urban or ornamental and natural forests, although trees in natural forests tended to have slightly higher levels of leaf damage.
  • 3 Damage caused by chewing insects was consistently higher on trees in natural forests than in urban or ornamental plantings. All other feeding guilds showed no consistent pattern in levels of damage between the two habitats.
  • 4 Total damage levels were highest on canopy trees and lowest on understorey trees.
  • 5 These results are inconsistent with the view that trees in urban or ornamental settings are more susceptible to insect attack than trees in natural forests.
  • 6 The lower level of foliar damage caused by chewing insects on trees in urban or ornamental plantings may arise because of low rates of dispersal by insects into urban environments, higher levels of plant resistance to insect attack in urban or ornamental plantings, or lower survival rates of herbivorous insects in urban environments.
  相似文献   

5.
6.
Abstract.
  • 1 The herbivorous insects on twelve species of evergreen broadleafed trees were repeatedly sampled over a period of 11 months in a small relict forest on the east coast of South Africa. This extraordinarily speciose forest patch has an unusually high proportion of endemic tree species, some of which are extremely rare.
  • 2 The insect herbivore fauna (number of species) seems to be markedly depauperate compared to that reported on native, broadleafed trees from other parts of the world. Some possible reasons for this are discussed.
  • 3 The total number of herbivorous insect species on each tree species was strongly correlated with the local relative abundance of the host plant species.
  • 4 There was no relationship between the total number of insect herbivore species on each tree species and the relative taxonomic isolation of the trees. The proportion of seemingly unique (= specialist) herbivorous insect species (i.e. those that occurred on one tree species only) was greatest on taxonomically isolated trees.
  • 5 A fundamental deficiency in the interpretation of the data in this study, and of many other similar studies that report on the number of insect species on plants, is discussed, namely the lack of clarity on the closeness of the association between individual insect herbivore species and their respective host plants.
  相似文献   

7.
8.
9.
10.
  • 1 Understanding the spatio‐temporal dynamics of insects in agroecosystems is crucial when developing effective management strategies that emphasize the biological control of pests.
  • 2 Wild populations of Trichogramma Westwood egg parasitoids are utilized for the biological suppression of the potentially resistant pest species Helicoverpa armigera (Hübner) in Bt‐transgenic cotton Gossypium hirsutum L. crops in the Ord River Irrigation Area (ORIA), Western Australia, Australia.
  • 3 Extensive, spatially‐stratified sampling during a season of relatively high Trichogramma abundance found that spatial patterns of pest egg parasitism in the ORIA tend toward heterogeneity, and do not necessarily coincide with host spatio‐temporal dynamics. Both patterns of host egg density and mean rates of parasitism are not good indicators of parasitoid spatio‐temporal dynamics in ORIA cotton crops.
  • 4 Parasitism rates can be significantly higher within the middle strata of the cotton plant canopy before complete canopy closure, despite a similar number of host eggs being available elsewhere in the plant.
  • 5 Spatial variation in egg parasitism by Trichogramma in Bt‐transgenic cotton is evident at the between‐field, within‐field and within‐plant scale, and is not solely driven by host spatial dynamics. These factors should be considered when estimating Trichogramma impact on pest species during biological control and spatio‐temporal studies of host‐parasitoid interactions in general.
  相似文献   

11.
12.
Abstract.
  • 1 The species number, the abundance per species and the body length of arthropods foraging within the crowns of an over-storey rainforest tree from Australia, Argyrodendron actinophyllum (Sterculiaceae), were investigated by interception trap sampling and restricted canopy fogging. Emphasis was placed upon the interpretation of trap data. Arthropods were trapped continuously day and night, over a 2-year period and the final analyses examined the attributes of 759 species which represented 20,500 individuals.
  • 2 The proportion of‘rare’species (Le. collected once) intercepted was high (35.7%), although lower than in other similar rainforest surveys. Neither the α log-series nor the log-normal distribution could be fitted to the relationship between number of species and number of individuals, since the number of rare species was much higher than predicted and the mode of the distribution could not be identified. The proportion of rare species was higher in fogging collections (452%) than in trap collections.
  • 3 The data are compared with a study of Bornean arboreal beetles, obtained by fogging trees during a single sampling event. Several patterns were common to both data sets. However, the three-dimensional plot of the variables describing the structure of the arthropod community showed a notably rougher surface than in the case of Bornean beetles.
  • 4 Although several factors may complicate the interpretation of the three-dimensional plots, long-term and continuous sampling may alter our perception of complex arthropod communities. This methodology is imperative for a proper understanding of arthropod community structure in rain forests.
  相似文献   

13.
  1. The dissimilarity and hierarchy of trait values that characterize niche and fitness differences, respectively, have been increasingly applied to infer mechanisms driving community assembly and to explain species co‐occurrence patterns. Here, we predict that limiting similarity should result in the spatial segregation of functionally similar species, while functionally similar species will be more likely to co‐occur either due to environmental filtering or due to competitive exclusion of inferior competitors (hereafter hierarchical competition).
  2. We used a fully mapped 50‐ha subtropical forest plot in southern China to explore how pairwise spatial associations between saplings and between adult trees were influenced by trait dissimilarity and hierarchy in order to gain insight into assembly mechanisms. We assessed pairwise spatial associations using two summary statistics of spatial point patterns at different spatial scales and compared the effects of trait dissimilarity and trait hierarchy of different functional traits on the interspecific spatial associations. These comparisons allow us to disentangle the effects of limiting similarity, environmental filtering, and hierarchical competition on species co‐occurrence.
  3. We found that trait dissimilarity was generally negatively related to interspecific spatial associations for both saplings and adult trees across spatial scales, meaning that species with similar trait values were more likely to co‐occur and thus supporting environmental filtering or hierarchical competition. We further found that trait hierarchy outweighed trait dissimilarity in structuring pairwise spatial associations, suggesting that hierarchical competition played a more important role in structuring our forest community than environmental filtering across life stages.
  4. This study employed a novel method, by offering the integration of pairwise spatial association and trait dissimilarity as well as trait hierarchy, to disentangle the relative importance of multiple assembly mechanisms in structuring co‐occurrence patterns, especially the mechanisms of environmental filtering and hierarchical competition, which lead to indistinguishable co‐occurrence patterns. This study also reinforced the importance of trait hierarchy rather than trait dissimilarity in driving neighborhood competition.
  相似文献   

14.
Abstract.
  • 1 The generalization that ferns are under-utilized by phytophagous insects in comparison to angiosperms may be invalid because of biases involving plant growth form, plant range, and unequal sampling efforts.
  • 2 Comparison of nineteen fern species with 652 herb species, the angjosperm growth form most similar to the ferns, indicates no significant difference in the mean number of supported macrolepidopteran species. When the herbs are subdivided into annuals, biennials and perennials, only the annual herbs are significantly different than the ferns.
  • 3 Comparisons of the occurrence distributions for ferns and the herb categories also demonstrate that only the annual herbs support more macrolepidopteran species than the ferns. The same results are obtained when random assemblages of herbs are created that are the same size as the fern assemblage.
  • 4 Both the occurrence distributions and the species–area relationship for the ferns indicate that host records for insects feeding on ferns may be grossly incomplete.
  • 5 The similarity of exploitation of ferns and perennial herbs by the Macro-lepidoptera suggests that other foliage feeding insects may also use ferns at levels equivalent to angiosperms.
  相似文献   

15.
  1. Cork oak landscapes are fascinating ecosystems, historically managed for cork extraction. The persistence in this habitat of many hollow veteran trees provides suitable micro-habitats for saproxylic beetles.
  2. We investigated the saproxylic beetle community of two isolated cork oak woodlands of central Italy with different degree of recovery after human transformation: (1) an open woodland and (2) a dense mixed woodland, both dominated by cork oak trees.
  3. We found endemic, rare and threatened saproxylic beetles in both the areas, confirming the important conservation value of cork oak landscapes. In the open woodland we observed a higher number of species in all trophic categories, except for mycophagous specialists. Several microhabitat variables reflected the different stage of recovery of the two woodlands.
  4. Our findings suggest the crucial role of diversified environments in protected areas: even a small difference in the degree of recovery (i.e., tree closeness) can affect the number of beetle species. Specifically, we found (1) more xerophilous species in the open woodland and (2) more mesophilous species in the dense mixed woodland.
  相似文献   

16.
  1. Movement behaviours of adult aquatic insects can produce distinct spatial distribution patterns. Studies of adult abundance with distance away from water bodies are common and may invoke flight capability to explain species differences. In contrast, distribution patterns along river channels are poorly described, but are no less important for understanding population dynamics. Longitudinal patterns in adult abundance along short river lengths may differ between sexes and at different life stage transitions between aquatic and terrestrial environments, i.e. at emergence and oviposition. Flight capability is unlikely to influence longitudinal patterns created at emergence, but may influence local abundances of mature females seeking to lay eggs. We tested hypotheses about how local abundances of mature females might differ according to oviposition habits and flight capability.
  2. We surveyed abundances of mature female caddisflies at adjacent riffle–pool pairs along short river lengths with homogeneous riparian cover. Our survey included nine species in three families (Hydrobiosidae, Leptoceridae, Hydropsychidae), which encompassed multiple different oviposition habits and a range of wing sizes and shapes. Several of the species oviposit preferentially in riffles. Accordingly, we tested for differences in female abundance between channel units (adjacent riffle–pool pairs). We also tested whether females attained higher abundances in some places along channels than others (i.e. over larger spatial scales and regardless of channel unit) which imply movements along the channel and aggregation in some locations. Wing morphology was used as a proxy measure of flight capability and included measures of wing span, area, aspect ratio and the second moment of wing area.
  3. Three distinctly different distribution patterns of mature female caddisflies were identified. The abundance of three species varied over larger scales only (multiple channel units). Six species that oviposit preferentially in riffles had higher female abundances at riffles than pools, but for only one did abundances also vary over larger scales. There was no association between these different patterns and measures of wing morphology, after removing metrics that were correlated and that differed systematically between taxonomic families. However, we could not reject the hypothesis that some aspect of flight behaviour may have contributed to observed patterns.
  4. The diverse but distinct distributions of mature female caddisflies we observed along short channel lengths are novel and suggest that species differ in their propensity for movement along streams, which could have consequences for local densities of eggs and juveniles in the aquatic environment. The degree to which population sizes are coupled across the terrestrial-to-aquatic transition is rarely investigated in aquatic insects and may provide fresh insight into sources of spatial variation within populations. Similarly, a more nuanced approach to research on the flight of aquatic insects, including age- and sex-specific phenomena, may provide greater insight into the diverse ecological functions and consequences of movement.
  相似文献   

17.
18.
The effect of canopy trees on understory seedling and sapling distribution is examined in near-climax hemlock-northern hardwood forests in order to predict tree replacement patterns and assess compositional stability. Canopy trees and saplings were mapped in 65 0.1-ha plots in 16 tracts of old-growth forests dominated by Tsuga canadensis, Acer saccharum, Fagus grandifolia, Tilia americana, and Betula lutea in the northeastern United States. Seedlings were tallied in sub-plots. Canopy influence on individual saplings and sub-plots was calculated, using several indices for canopy species individually and in total. For each species sapling and seedling distributions were compared to those distributions expected if saplings were located independently of canopy influence. Non-random distributions indicated that sapling and seedling establishment or mortality were related to the species of nearby canopy trees. Hemlock canopy trees discriminate against beech and maple saplings while sugar maple canopy favors beech saplings relative to other species. Basswood canopy discourages growth of saplings of other species, but produces basal sprouts. Yellow birch saplings were rarely seen beneath intact canopy. Since trees in these forests are usually replaced by suppressed seedlings or saplings, canopy-understory interactions should influence replacement probabilities and, ultimately, stand composition. I suggest that hemlock and basswood tend to be self-replacing, maple and beech tend to replace each other, and birch survives as a fugitive by occupying occasional suitable gaps. This suggests that these species may co-exist within stands for long periods with little likelihood of successional elimination of any species. There is some suggestion of geographical variation in these patterns.  相似文献   

19.
  • 1 Examination of 606 mammals of seventeen species and 959 birds of thirty-three species yielded sixty-three species or species groups of ectoparasitic arthropod. These included eighteen species of Acari, twenty-five species or species groups of Phthiraptera, eighteen species of Diptera Pupipara, and two species of Siphonaptera. These are listed with their hosts and island localities, and host associations noted.
  • 2 Host specificity amongst ectoparasitic insects is discussed, and the insects classified into four groups of decreasing specificity.
  • 3 Several broad factors likely to encourage specificity are noted, and it is concluded that the wide diversity of specificity observed is caused by complex interaction of these factors.
  相似文献   

20.
John A. Barone 《Biotropica》2000,32(2):307-317
The Janzen–Connell model of tropical forest tree diversity predicts that seedlings and young trees growing close to conspecific adults should experience higher levels of damage and mortality from herbivorous insects, with the adult trees acting as either an attractant or source of the herbivores. Previous research in a seasonal forest showed that this pattern of distance‐dependent herbivory occurred in the early wet season during the peak of new leaf production. I hypothesized that distance‐dependent herbivory may occur at this time because the new foliage in the canopy attracts high numbers of herbivores that are limited to feeding on young leaves. As a consequence, seedlings and saplings growing close to these adults are more likely to be discovered and damaged by these herbivores. In the late wet season, when there is little leaf production in the canopy, leaf damage is spread more evenly throughout the forest and distance dependence disappears. I tested three predictions based on this hypothesis: (1) the same species of insect herbivores attack young and adult trees of a given plant species; (2) herbivore densities increase on adult trees during leaf production; and (3) herbivore densities in the understory rise during the course of the wet season. Censuses were conducted on adults and saplings of two tree species, raribea asterolepis and Alseis blackiana. Adults and saplings of both species had largely the same suite of chewing herbivore species. On adults of Q. asterolepis, the density of chewing herbivores increased 6–10 times during leaf production, but there was no increase in herbivore density on adults of A. blackiana. Herbivore densities increased 4.5 times on A. blackiana saplings and 8.9 times on Q. asterolepis saplings during the wet season, but there were no clear trends on the adults of either species. These results suggest that the potential of adult trees as a source of herbivores on saplings depends on the value of new leaves to a tree species' herbivores, which may differ across tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号