首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

During the estrous cycle, the rat uterine endometrium undergoes many changes such as cell proliferation and apoptosis. If implantation occurs, stromal cells differentiate into decidual cells and near the end of pregnancy, a second wave of apoptosis occurs. This process called decidual regression, is tightly regulated as is it crucial for successful pregnancy. We have previously shown that TGF-beta1, TGF-beta2 and TGF-beta3 are expressed in the endometrium during decidual basalis regression, but although we had demonstrated that TGF- beta1 was involved in the regulation of apoptosis in decidual cells, the ability of TGF- beta2 and TGF-beta3 isoforms to trigger apoptotic mechanisms in these cells remains unknown. Moreover, we hypothesized that the TGF-betas were also present and regulated in the non-pregnant endometrium during the estrous cycle. The aim of the present study was to determine and compare the specific effect of each TGF-β isoform in the regulation of apoptosis in sensitized endometrial stromal cells in vitro, and to investigate the regulation of TGF-beta isoforms in the endometrium during the estrous cycle in vivo.  相似文献   

2.
This review discusses the roles of the transforming growth factor-betas (TGF-betas) as part of a complex network that regulates the development and maintenance of the neuromuscular system. The actions of the TGF-betas often vary depending on which other growth factors are present, making it difficult to extrapolate results from in vitro experiments to the in vivo situation. A new approach has therefore been needed to understand the physiological functions of the TGF-betas. The behaviours (proliferation, fusion, apoptosis) of many of the cells in the neuromuscular system have a complex pattern which varies in space and time. The actions of growth factors in this system can thus be deduced based on how well their pattern of expression correlates with known cellular behaviours. Hypotheses based on this molecular anatomical evidence can then be further tested with genetically modified mice. From this type of evidence, we suggest that: (1) TGF-beta1 is an autocrine regulator of Schwann cells; (2) maternally-derived TGF-beta1 helps to suppress self and maternal immune attack; (3) TGF-beta2 regulates when and where myoblasts fuse to myotubes; (4) motoneuron survival is regulated by multiple sources of TGF-betas, with TGF-beta2 being the more important isoform. The concept of TGF-beta1 as a regulator of secondary myotube formation is not supported by either the location of the TGF-beta1 in developing muscles or by the phenotype of TGF-beta1-/- mice. The review concludes with a discussion of whether all of these of postulated functions can occur independently of each other, within the confines of the neuromuscular system.  相似文献   

3.
Because living systems depend on their environment, the evolution of environmental adaptability is inseparable from the evolution of life itself (Pross 2003). In animals and humans, environmental adaptability extends further to adaptive behavior. It has recently emerged that individual adaptability depends on the interaction of adaptation mechanisms at diverse functional levels. This interaction enables the integration of genetic, epigenetic and environmental factors for coordinated regulation of adaptations. In this review, we first present the basis for the regulation of adaptation mechanisms across functional levels. We then focus on neuronal activity-regulated adaptation mechanisms that involve the regulation of genes, noncoding DNA (ncDNA), ncRNAs and proteins to change the structural and functional properties of neurons. Finally, we discuss a selection of these important neuronal activity-regulated molecules and their effects on brain structure and function and on behavior. Most of the evidence so far is based on sampling of animal tissue or post-mortem studies in humans. However, we also present techniques that combine genetic with behavioral and neurophysiological measures in humans (e.g. genetic imaging) and discuss their potential and limitations. We argue that we need to understand how neuronal activity-dependent adaptation mechanisms integrate genetic, epigenetic and experience-dependent signals in order to explain individual variations in behavior and cognitive performance.  相似文献   

4.
Cell surface adhesion and extracellular matrix proteins are known to play a key role in the formation of cell condensations during skeletal development, and their formation is crucial for the expression of cartilage-specific genes. However, little is known about the relationship between adhesion molecules (N-cadherin and N-CAM), extracellular matrix proteins (fibronectin and tenascin) and TGF-beta1, TGF-beta2 and TGF-beta3 during in vitro precartilage condensations in mouse chondrogenesis. On these bases, we determined the participation of mammalian TGF-beta1, TGF-beta2 and TFG-beta3 and Xenopus TGF-beta5 on the expression of cell surface adhesion and extracellular matrix proteins during the formation of precartilage condensations. Also, we characterized the effects of TGF-betas on proteoglycan metabolism at different cellular densities in mouse embryonic limb bud mesenchymal cells. In TGF-beta1 and TGF-beta5-treated cultures, proteoglycan biosynthesis was higher than in controls, while there were no differences in proteoglycan catabolism, which caused the accumulation of cartilage extracellular matrix. When mesenchymal cells were seeded at three different cellular densities in the presence of TGF-betas, only high density cultures presented increased stimulation of proteoglycan biosynthesis, compared to low and intermediate densities. To determine whether the effect of TGF-betas on precartilage condensations is mediated through the expression of N-cadherin, N-CAM, fibronectin and tenascin, we evaluated their expression. Results showed that TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta5 differentially enhanced the expression of N-cadherin, N-CAM, fibronectin and tenascin in precartilage condensations, suggesting that TGF-beta isoforms play an important role in the establishment of cell-cell and cell-extracellular matrix interactions during precartilage condensations.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) Tat induces neuronal apoptosis. To examine the mechanism(s) that contribute to this process, we studied Tat's effects on glycogen synthase kinase-3beta (GSK-3beta), an enzyme that has been implicated in the regulation of apoptosis. Addition of Tat to rat cerebellar granule neurons resulted in an increase in GSK-3beta activity, which was not associated with a change in protein expression and could be abolished by the addition of an inhibitor of GSK-3beta (lithium). Lithium also enhanced neuronal survival following exposure to Tat. Coprecipitation experiments revealed that Tat can associate with GSK-3beta, but direct addition of Tat to purified GSK-3beta had no effect on enzyme activity, suggesting that Tat's effects might be mediated indirectly. As the activation of platelet activating factor (PAF) receptors is critical for the induction of neuronal death by several candidate HIV-1 neurotoxins, we determined whether PAF can also activate GSK-3beta. Application of PAF to neuronal cultures activated GSK-3beta, and coincubation with lithium ameliorated PAF-induced neuronal apoptosis. These findings are consistent with the existence of one or more pathways that can lead to GSK-3beta activation in neurons, and they suggest that the dysregulation of this enzyme could contribute to HIV-induced neuronal apoptosis.  相似文献   

6.
Several neurotransmitters including serotonin and glutamate have been shown to be involved in many aspects of neural development, such as neurite outgrowth, regulation of neuronal morphology, growth cone motility and dendritic spine shape and density, in addition to their well-established role in neuronal communication. This review focuses on recent advances in our understanding of the molecular mechanisms underlying neurotransmitter-induced changes in neuronal morphology. In the first part of the review, we introduce the roles of small GTPases of the Rho family in morphogenic signaling in neurons and discuss signaling pathways, which may link serotonin, operating as a soluble guidance factor, and the Rho GTPase machinery, controlling neuronal morphology and motility. In the second part of the review, we focus on glutamate-induced neuroplasticity and discuss the evidence on involvement of Rho and Ras GTPases in functional and structural synaptic plasticity triggered by the activation of glutamate receptors.  相似文献   

7.
Translational control of gene expression is emerging as a cardinal step in the regulation of protein abundance. Especially for embryonic (ESC) and neuronal stem cells (NSC), regulation of mRNA translation is involved in the maintenance of pluripotency but also differentiation. For neuronal stem cells this regulation is linked to the various neuronal subtypes that arise in the developing brain and is linked to numerous brain disorders. Herein, we review translational control mechanisms in ESCs and NSCs during development and differentiation, and briefly discuss their link to brain disorders.  相似文献   

8.
Transforming growth factors beta (TGF-betas) are multifunctional cytokines that modulate cell growth, differentiation and apoptosis. Numerous effects initiated by TGF-betas in vitro have been described, but the role of TGF-beta targeting and activation under physiological conditions has gained very little attention and understanding. We report here that apoptosis of human umbilical vein endothelial cells (HUVECs) is accompanied by release of truncated large latent TGF-beta complexes from the pericellular matrix followed by activation of TGF-beta. The activation of TGF-beta during apoptosis was accompanied by enhanced secretion of beta1-LAP protein, and apoptotic HUVECs acquired the capacity to induce the release of latent TGF-beta-binding proteins (LTBPs) from extracellular matrices. Activated TGF-beta, in turn, attenuated apoptotic death of HUVECs. Current results indicate that the activation of TGF-beta accompanies the apoptosis of HUVECs, and may play a protective feedback role against apoptotic cell death. The results suggest a role for TGF-beta as a putative extracellular modulator of apoptosis.  相似文献   

9.
All transforming growth factor beta (TGF-beta) superfamily members are synthesized as precursors with prodomain sequences that are proteolytically removed by subtilisin-like proprotein convertases (SPCs). For most superfamily members, this is believed sufficient for activation. Exceptions are TGF-betas 1 to 3 and growth differentiation factor 8 (GDF8), also known as myostatin, which form noncovalent, latent complexes with their SPC-cleaved prodomains. Sequence similarities between TGF-betas 1 to 3, myostatin, and superfamily member GDF11, also known as bone morphogenetic protein 11 (BMP11), prompted us to examine whether GDF11 might be capable of forming a latent complex with its cleaved prodomain. Here we demonstrate that GDF11 forms a noncovalent latent complex with its SPC-cleaved prodomain and that this latent complex is activated via cleavage at a single specific site by members of the developmentally important BMP1/Tolloid family of metalloproteinases. Evidence is provided for a molecular model whereby formation and activation of this complex may play a general role in modulating neural differentiation. In particular, mutant GDF11 prodomains impervious to cleavage by BMP1/Tolloid proteinases are shown to be potent stimulators of neurodifferentiation, with potential for therapeutic applications.  相似文献   

10.
The TGF-beta family of growth factors contains a large number of homologous proteins, grouped in several subfamilies on the basis of sequence identity. These subgroups can be combined into three broader groups of related cytokines, with marked specificities for their cellular receptors: the TGF-betas, the activins and the BMPs/GDFs. Although structural information is available for some members of the TGF-beta family, very little is known about the way in which these growth factors interact with the extra-cellular domains of their multiple cell surface receptors or with the specific protein inhibitors thought to modulate their activity. In this paper, we use the evolutionary trace method [Lichtarge et al. (1996) J. Mol. Biol., 257, 342-358] to locate two functional patches on the surface of TGF-beta-like growth factors. The first of these is centred on a conserved proline (P(36) in TGF-betas 1-3) and contains two amino acids which could account for the receptor specificity of TGF-betas (H(34) and E(35)). The second patch is located on the other side of the growth factor protomer and surrounds a hydrophobic cavity, large enough to accommodate the side chain of an aromatic residue. In addition to two conserved tryptophans at positions 30 and 32, the main protagonists in this potential binding interface are found at positions 31, 92, 93 and 98. Several mutagenesis studies have highlighted the importance of the C-terminal region of the growth factor molecule in TGF-betas and of residues in activin A equivalent to positions 31 and 94 of the TGF-betas for the binding of type II receptors to these ligands. These data, together with our improved knowledge of possible functional residues, can be used in future structure-function analysis experiments.  相似文献   

11.
This review briefly describes the cellular distribution and documented roles of the transforming growth factor (TGF)-beta isoforms TGF-beta2 and -beta3 in the central and peripheral nervous system. TGF-beta2 and -beta3 are coexpressed in developing radial glial and mature astroglial and Schwann cells, as well as in subpopulations of differentiated neurons, most prominently in cortical, hippocampal, and brainstem/spinal cord motor neurons. In vitro studies have suggested a number of potential, physiologically relevant functions for TGF-betas including regulation of astroglial cell proliferation, expression of adhesion molecules, survival promoting roles for neurons in combination with established neurotrophic factors, and differentiative actions on neurons.  相似文献   

12.
The TGF-betas are a family of pleiotropic cytokines that mediate diverse effects including the regulation of cell cycle progression, apoptosis, tissue remodelling and epithelial-mesenchymal transition (EMT). These diverse effects allow the TGF-betas to play multiple and even opposing roles in different contexts during embryonal development, tissue homeostasis and cancer progression. We recently reported that the protein tyrosine phosphatase Pez is a novel inducer of TGF-beta signaling, regulating EMT and organogenesis in developing zebrafish embryos, and leading to TGF-beta mediated EMT when over-expressed in vitro in epithelial MDCK cells. A number of mutations in Pez have been shown to be associated with breast and colorectal cancers, although the effect of these mutations on Pez function and their contribution to cancer progression remains unclear. Our finding that Pez regulates TGF-beta signaling is therefore of interest not only in the context of identifying a novel upstream regulator of TGF-beta signaling, but also in implicating the dysregulation of TGF-beta signaling as a possible link between Pez mutation and cancer progression. Here we discuss the implications of our research, in the context of dysregulation of TGF-beta signaling in cancer and other human pathologies.  相似文献   

13.
Axonal degeneration and neuronal cell death are fundamental processes in development and contribute to the pathology of neurological disease in adults. Both processes are regulated by BCL-2 family proteins which orchestrate the permeabilization of the mitochondrial outer membrane (MOM). MOM permeabilization (MOMP) results in the activation of pro-apoptotic molecules that commit neurons to either die or degenerate. With the success of small-molecule inhibitors targeting anti-apoptotic BCL-2 proteins for the treatment of lymphoma, we can now envision the use of inhibitors of apoptosis with exquisite selectivity for BCL-2 family protein regulation of neuronal apoptosis in the treatment of nervous system disease. Critical to this development is deciphering which subset of proteins is required for neuronal apoptosis and axon degeneration, and how these two different outcomes are separately regulated. Moreover, noncanonical BCL-2 family protein functions unrelated to the regulation of MOMP, including impacting necroptosis and other modes of cell death may reveal additional potential targets and/or confounders. This review highlights our current understanding of BCL-2 family mediated neuronal cell death and axon degeneration, while identifying future research questions to be resolved to enable regulating neuronal survival pharmacologically.Subject terms: Cell biology, Chemical tools, Neuroscience, Neurological disorders  相似文献   

14.
Diacylglycerol kinases (DGKs) are a class of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH), resulting in the coordinate regulation of these two lipid second messengers. This regulation is particularly important in the nervous system where it is now well-established that DAG and PtdOH serve very important roles in modulating a variety of neurological functions. There are currently 10 identified mammalian DGKs, organized into five classes or "Types" based upon similarities in their primary sequences. A number of studies have identified eight of these isoforms in various regions of the mammalian central nervous system (CNS): DGK-α, DGK-β, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-?, and DGK-θ. Further studies have provided compelling evidence supporting roles for these enzymes in neuronal spine density, myelination, synaptic activity, neuronal plasticity, epileptogenesis and neurotransmitter release. The physiological regulation of these enzymes is less clear. Like all interfacial enzymes, DGKs metabolize their hydrophobic substrate (DAG) at a membrane-aqueous interface. Therefore, these enzymes can be regulated by alterations in their subcellular localization, enzymatic activity, and/or membrane association. In this review, we summarize what is currently understood about the localization and regulation of the neuronal DGKs in the mammalian CNS.  相似文献   

15.
Semaphorin proteins are among the best-studied families of guidance cues. Initially characterized as repulsive neuronal guidance cues, during the last decade, significant progress has been made in defining their involvement in the regulation of dynamic changes in the cellular cytoskeleton during embryonic and postnatal neuronal development, under both physiological and pathological conditions. However, semaphorins are not restricted to the nervous system but widely expressed in other tissues, where they play key roles in angiogenesis and organogenesis.In recent years, there has been an increasing emphasis on the potential influence of semaphorins on the development and homeostasis of hormone systems, and conversely, how circulating reproductive hormones regulate semaphorin expression. In this review, we summarize recent studies analyzing the contribution of semaphorin signaling to the morphogenesis, differentiation and plasticity of fundamental neuroendocrine and endocrine systems that regulate key physiological processes, such as reproduction, bone formation and the control of energy homeostasis.  相似文献   

16.
Diacylglycerol kinases (DGKs) are a class of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH), resulting in the coordinate regulation of these two lipid second messengers. This regulation is particularly important in the nervous system where it is now well-established that DAG and PtdOH serve very important roles in modulating a variety of neurological functions. There are currently 10 identified mammalian DGKs, organized into five classes or “Types” based upon similarities in their primary sequences. A number of studies have identified eight of these isoforms in various regions of the mammalian central nervous system (CNS): DGK-α, DGK-β, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-?, and DGK-θ. Further studies have provided compelling evidence supporting roles for these enzymes in neuronal spine density, myelination, synaptic activity, neuronal plasticity, epileptogenesis and neurotransmitter release. The physiological regulation of these enzymes is less clear. Like all interfacial enzymes, DGKs metabolize their hydrophobic substrate (DAG) at a membrane-aqueous interface. Therefore, these enzymes can be regulated by alterations in their subcellular localization, enzymatic activity, and/or membrane association. In this review, we summarize what is currently understood about the localization and regulation of the neuronal DGKs in the mammalian CNS.  相似文献   

17.
Stroke is a devastating disorder that significantly contributes to death, disability, and healthcare costs. New therapeutic strategies have been recently focusing on the development of neuroprotective agents that could halt the underlying mechanisms of neuronal death leading to brain damage. Accumulating evidence implicates proteins that are normally involved in the regulation of the cell cycle to neuronal death following ischemic insult, suggesting that these proteins could be suitable targets for stroke therapy. In this brief review, we present in vitro and in vivo arguments linking cell cycle molecules, i.e., cyclins, mitotic cyclin-dependent kinases (Cdks), as well as non-mitotic Cdk5, to ischemic neuronal death. We also report the evaluation of the potential of Cdk inhibitors as neuroprotective strategy for ischemic injury.  相似文献   

18.
Bibb JA 《Neuro-Signals》2003,12(4-5):191-199
Functional and structural neuronal plasticity are mediated by a complex network of biochemical signal transduction pathways that control the strength of specific synapses and the formation of new synapses de novo. The neuronal protein kinase Cdk5 has been implicated as being involved in numerous aspects of both functional and structural plasticity through its regulation of signal transduction pathways. In this review the findings of a number of studies are summarized that have advanced our understanding of how Cdk5 may be involved in these processes. We focus on the modulation of protein phosphatase activity in both the hippocampus and basal ganglia, and review findings that indicate Cdk5 is likely to regulate neuronal plasticity in these brain regions. Studies showing involvement of Cdk5 in reward and motor-based plasticity, which are thought to underlie drug abuse, are discussed.  相似文献   

19.
Members of the transforming growth factor-beta (TGF-beta) superfamily signal through heteromeric type I and type II serine/threonine kinase receptors. Transgenic mice that overexpress a dominant-negative mutation of the TGF-beta type II receptor (DNIIR) under the control of a metallothionein-derived promoter (MT-DNIIR) were used to determine the role of endogenous TGF-betas in the developing mammary gland. The expression of the dominant-negative receptor was induced with zinc and was primarily localized to the stroma underlying the ductal epithelium in the mammary glands of virgin transgenic mice from two separate mouse lines. In MT-DNIIR virgin females treated with zinc, there was an increase in lateral branching of the ductal epithelium. We tested the hypothesis that expression of the dominant-negative receptor may alter expression of genes that are expressed in the stroma and regulated by TGF-betas, potentially resulting in the increased lateral branching seen in the MT-DNIIR mammary glands. The expression of hepatocyte growth factor mRNA was increased in mammary glands from transgenic animals relative to the wild-type controls, suggesting that this factor may play a role in TGF-beta-mediated regulation of lateral branching. Loss of responsiveness to TGF-betas in the mammary stroma resulted in increased branching in mammary epithelium, suggesting that TGF-betas play an important role in the stromal-epithelial interactions required for branching morphogenesis.  相似文献   

20.
Dendritic spines are specialized structures on neuronal processes where the majority of excitatory synapses are localized. Spines are highly dynamic, and their stabilization and morphology are influenced by synaptic activity. This extrinsic regulation of spine morphogenesis underlies experience-dependent brain development and information storage within the brain circuitry. In this review, we summarize recent findings that demonstrate the phenomenon of activity-dependent structural plasticity and the molecular mechanisms by which synaptic activity sculpt neuronal connections. Impaired structural plasticity is associated with perturbed brain function in neurodevelopmental disorders such as autism. Information from the mechanistic studies therefore provides important insights into the design of therapeutic strategies for these brain disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号