首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The substrate specificity of 11 beta-hydroxylase of Cochliobolus lunatus was studied and a close parallelism to the results obtained with 11 alpha-hydroxylase of Rhizopus nigricans was observed. It was found that the cell wall does not differentiate between the steroid substrates used and the absence of the cell wall increases the bioconversion.  相似文献   

2.
The 11 beta-hydroxylase of the filamentous fungus Cochliobolus lunatus m 118 was induced with the substrate 17 alpha, 21-dihydroxypregna-1,4-diene-3,20-dione 17-acetate (11 beta-deoxyprednisolone 17-acetate) itself, substrate analogues, different pregnane compounds, sterols, intermediates of microbial sterol side-chain degradation or bile acids, together with 24 different steroids in a standardized test system. The resulting 11 beta-hydroxylation rate, leading to prednisolone 17-acetate and prednisolone, respectively, was determined and compared with the hydroxylation rate of non-induced cultures. The transformation yield strongly depended on the inducer structure. The microbial sterol side-chain degradation intermediates (20S)-20-hydroxymethylpregn-4-en-3-one and the corresponding pregna-1,4-diene compound caused the highest induction effects (induction factors 5.1 and 4.9, respectively). The metabolism of (20S)-20-hydroxymethylpregna-1,4-dien-3-one during the cultivation was elucidated. The induction effect decreased with the rising oxidation of the inducer. The significant increase of the 11 beta-hydroxylation rate of 1-dehydro-pregnane substrates by specific induction allows alternative pathways to glucocorticoid partial syntheses.  相似文献   

3.
Abstract Although Curvularia lunata is classified as a conidial anamorph of Cochliobolus lunatus , the electron microscopic studies revealed the ultrastructure of both strains to be significantly different. C. lunatus m118 grows in the hyphal form characterized by a thick cell wall and numerous lipid bodies. C. lunata forms thinner hyphae of various sizes and large oval spores. Electrophoretic karyotypes of C. lunatus m118 (this paper) and C. lunata AT46 (Osiewacz, H. and Ridder, R. (1991) Curr. Genet. 20, 151–155) as well as RAPD-PCR analysis with the primer (GTG)5 indicate close genetic relationship of both microorganisms.  相似文献   

4.
To promote understanding of the evolution of the steroid hormone signalling and hydroxysteroid dehydrogenases (HSDs), comparative characterization of fungal 17beta-HSDs was performed. Constitutive 17beta-HSD activity was determined in cytosols of the fungi: Cochliobolus lunatus, Pleospora herbarum, Fusarium lini, Trichoderma viride, Mucor spinosus, Rhizopus nigricans and Pleurotus ostreatus. The reaction equilibrium in all species except P. ostreatus was shifted towards reduction. The preferential coenzyme for reduction of androstenedione was NADPH, while for oxidation of testosterone, NAD4 was preferred. The highest enzyme activities were found in the Ascomycete C. lunatus (152.4 nmol mg(-1) h(-1)) and in the Basidiomycete P. ostreatus (69.1 nmol mg(-1) h(-1)). No similarities on the protein and mRNA level between fungal 17beta-HSDs and the purified enzyme from C. lunatus were observed. To investigate the nature of these enzymes, 17beta-HSD was purified from P. ostreatus using ammonium sulphate precipitation, hydrophobic interaction chromatography, and affinity chromatography. The purified enzyme has an apparent molecular mass of approximately 35 kDa and is probably a dimer as determined by gel filtration. Chemical modifications exposed Lys, His and Tyr as important for enzyme activity. Additionally, no similarities of C. lunatus and P. ostreatus enzymes were found to bacterial 3alpha,20beta-HSD from Streptomyces hydrogenans, 3beta,17beta-HSD from Comamonas testosteroni and mammalian 17beta-HSD types 1 and 4. The results thus suggest that there are most probably different enzymes responsible for 17beta-HSD activity in filamentous fungi.  相似文献   

5.
A DNA mediated transformation system has been developed for the filamentous fungus Cochliobolus lunatus. Transformants were obtained by using plasmid pAN 7-1 carrying the Escherichia coli hygromycin B phosphotransferase gene (hph) fused to an Aspergillus nidulans promoter. The integration of plasmid pAN 7-1 into the fungal genome altered the ability of this microorganism to transform progesterone.  相似文献   

6.
Cochliobolus lunatus is known to be able to hydroxylate steroids at position 11β. Besides this inducible enzyme, we found a constitutive hydroxysteroid dehydrogenase activity which is strongly regioselective with the highest activity at position 17, and the best substrate was found to be androstenedione. Using different substrates, no such activities were observed at positions 3 or 11. The enzyme is membrane bound and NADH or NADPH dependent. The protoplasts of Cochliobolus lunatus show the same activity as intact cells, which means that the cell wall does not influence the reaction.  相似文献   

7.
Cochliobolus lunatus 17beta-hydroxysteroid dehydrogenase (17beta-HSD) is pluripotent for several steroidal and nonsteroidal substrates. In the presence of NADPH the enzyme was found to reduce 3-keto groups of 4,5-dihydro steroids, 20-keto groups, and most efficiently, 17-keto groups of steroidal substrates. In addition, several quinones were accepted and found to be even better substrates as steroids due to their higher affinity for the enzyme-coenzyme complex and faster conversion of the enzyme-coenzyme-substrate complex into the corresponding products. As suggested by the competition studies quinones and 17-ketosteroids are converted by the same active center of the enzyme. For all tested substrates, the equilibrium ordered mechanism was established with NADPH binding first to the enzyme. According to our knowledge, the investigated 17beta-HSD is the first known fungal pluripotent enzyme of this type.  相似文献   

8.
We present the synthesis of a new family of nonsteroidal inhibitors of 17beta-hydroxysteroid dehydrogenase, designed from flavones and chalcones. Their inhibitory potential was screened on 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a model enzyme of the short-chain dehydrogenase/reductase superfamily. In a series of cinnamates and related coumarin-3-carboxylates, a number of compounds proved to be potent inhibitors of both the oxidative and reductive reactions catalyzed by 17beta-HSDcl, with IC(50) values in the low micromolar range.  相似文献   

9.
The synthesis and activity of a new series of non-steroidal inhibitors of 17beta-hydroxysteroid dehydrogenase that are based on a 1,5-benzodiazepine scaffold are presented. Their inhibitory potential was screened against 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a model enzyme of the short-chain dehydrogenase/reductase superfamily. Some of these compounds are potent inhibitors of 17beta-HSDcl activity, with IC50 values in the low micromolar range and represent promising lead compounds that should be further developed and investigated as inhibitors of human 17beta-HSD isoforms, which are the enzymes associated with the development of many hormone-dependent and neuronal diseases.  相似文献   

10.
Cytochrome P450 reductase (CPR) is the redox partner of P450 monooxygenases, involved in primary and secondary metabolism of eukaryotes. Two novel CPR genes, sharing 34% amino acid identity, were found in the filamentous ascomycete Cochliobolus lunatus. Fungal genomes were searched for putative CPR enzymes. Phylogenetic analysis suggests that multiple independent CPR duplication events occurred in fungi, whereas P450-CPR fusion occurred before the diversification of Dikarya and Zygomycota. Additionally, losses of methionine synthase reductase were found in certain fungal taxa; a truncated form of this enzyme was conserved in Pezizomycotina. In fungi, high numbers of cytochrome P450 enzymes, multiple CPRs, and P450-CPR fusion proteins were associated with filamentous growth. Evolution of multiple CPR-like oxidoreductases in filamentous fungi might have been driven by the complexity of biochemical functions necessitated by their growth form, as opposed to yeast.  相似文献   

11.
Cytochrome P450 reductase (CPR) is the redox partner of P450 monooxygenases, involved in primary and secondary metabolism of eukaryotes. Two novel CPR genes, sharing 34% amino acid identity, were found in the filamentous ascomycete Cochliobolus lunatus. Fungal genomes were searched for putative CPR enzymes. Phylogenetic analysis suggests that multiple independent CPR duplication events occurred in fungi, whereas P450-CPR fusion occurred before the diversification of Dikarya and Zygomycota. Additionally, losses of methionine synthase reductase were found in certain fungal taxa; a truncated form of this enzyme was conserved in Pezizomycotina. In fungi, high numbers of cytochrome P450 enzymes, multiple CPRs, and P450-CPR fusion proteins were associated with filamentous growth. Evolution of multiple CPR-like oxidoreductases in filamentous fungi might have been driven by the complexity of biochemical functions necessitated by their growth form, as opposed to yeast.  相似文献   

12.
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) are enzymes responsible for reversible interconversions of biologically active 17-hydroxy and inactive 17-keto steroids. We have performed a survey of 17beta-HSD activity in yeast. Constitutive 17beta-HSD activity was found in three mesophilic yeast species: Candida tropicalis, Cryptococcus tsukubaensis, and Saccharomyces cerevisiae as well as in three extremophilic black yeast species: Hortaea werneckii, Trimmatostroma salinum, and Phaeotheca triangularis, indicating that 17beta-HSD activity is widely distributed among yeast. In extremophilic black yeast, NaCl modulated enzyme activity. Enzymes resembling 17beta-HSD from the filamentous fungus Cochliobolus lunatus were detected in Trimmatostroma salinum and Phaeotheca triangularis. Sequences with identity to the Saccharomyces cerevisiae YBR159w gene were not observed in other yeast species possessing a similar enzyme activity. The results suggest the existence of at least three different types of 17beta-HSD in yeast.  相似文献   

13.
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone, all had IC(50) values between 1 and 5microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2.  相似文献   

14.
Kristan K  Krajnc K  Konc J  Gobec S  Stojan J  Rizner TL 《Steroids》2005,70(10):694-703
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100 microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100 microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1 microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone all had IC(50) values between 1 and 5 microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2.  相似文献   

15.
The extent of dopamine beta-hydroxylase induction elicited by reserpine was measured in young rats rendered hypothyroid from birth and in controls. Hypothyroidism impairs adrenal dopamine beta-hydroxylase induction in the young rat up to 50 days of age and also in the adult. In contrast, hypothyroidism has practically no effect on brainstem dopamine beta-hydroxylase induction.  相似文献   

16.
A homology-built structural model of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus, a member of the short-chain dehydrogenase/reductase family, was worked out using the known three-dimensional structure of trihydroxynaphthalene reductase (EC 1.3.1.50) from Magnaporthe grisea as a template. Due to 61% sequence identity, the model also revealed a similar backbone trace. On the basis of qualitative thin-layer chromatography and comparative kinetic tests of the activity toward various potential steroid substrates, we conclude that androgens are more efficiently converted than estrogens. Their specific oxidoreduction predominantly occurs at the C17 position while no significant conversion at C3 and C20 was determined. Additionally, a thousand times effective inhibition by 5-methyl-(1,2,4)-triazolo[3,4-b]benzothiazole and no activity toward 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one indicate distinct specificies of 17beta-hydroxysteroid dehydrogenase from the fungus C. lunatus and trihydroxynaphthalene reductase. The results of the analysis of progress curve measurements for the forward and backward reactions are consistent with the Theorell-Chance reaction mechanism also predicted from the structural model. In accordance with these results, 4-androstene-3,17-dione was docked into the enzyme active site using molecular modeling and dynamics calculations.  相似文献   

17.
漆酶是一种含铜的多酚氧化酶,与植物病原菌致病性、黑色素合成及降解木质素等方面相关。为明确漆酶在新月旋孢腔菌的催化作用及其催化活性,以2,2′-连氮-双(3-乙基苯并噻唑-6-磺酸)(简称ABTS)为底物,利用分光光度计在420nm下测定胞内漆酶活力,结果表明酶活测定最佳反应条件为缓冲液pH2.8、Cu2+浓度500μmol/L和0.6mmol/L ABTS。根据漆酶Cu2+结合保守结构域设计了1条引物,对新月旋孢腔菌漆酶基因进行克隆,并通过RACE技术克隆了其全长cDNA序列。开放阅读框长1,803bp,  相似文献   

18.
Cytochromes P450 (CYPs) catalyse diverse reactions and are key enzymes in fungal primary and secondary metabolism, and xenobiotic detoxification. CYP enzymatic properties and substrate specificity determine the reaction outcome. However, CYP-mediated reactions may also be influenced by their redox partners. Filamentous fungi with numerous CYPs often possess multiple microsomal redox partners, cytochrome P450 reductases (CPRs). In the plant pathogenic ascomycete Cochliobolus lunatus we recently identified two CPR paralogues, CPR1 and CPR2. Our objective was to functionally characterize two endogenous fungal cytochrome P450 systems and elucidate the putative physiological roles of CPR1 and CPR2. We reconstituted both CPRs with CYP53A15, or benzoate 4-hydroxylase from C. lunatus, which is crucial in the detoxification of phenolic plant defence compounds. Biochemical characterization using RP-HPLC shows that both redox partners support CYP activity, but with different product specificities. When reconstituted with CPR1, CYP53A15 converts benzoic acid to 4-hydroxybenzoic acid, and 3-methoxybenzoic acid to 3-hydroxybenzoic acid. However, when the redox partner is CPR2, both substrates are converted to 3,4-dihydroxybenzoic acid. Deletion mutants and gene expression in mycelia grown on media with inhibitors indicate that CPR1 is important in primary metabolism, whereas CPR2 plays a role in xenobiotic detoxification.  相似文献   

19.
The Cochliobolus genus consist of over 55 species among which the 5 most devastating are Cochliobolus carbonum, Cochliobolus heterostrophus, Cochliobolus miyabeanus, Crocus sativus and Cochliobolus lunatus causing damages in sorghum, wheat, rice, maize, cassava and soybean estimated at over 10 billion USD per annum worldwide. The dynamic pathogenicity of Cochliobolus species and the plethora of infected hosts is determined by the evolution of virulence determinants such as the velvet-like B protein (VelB). Nonetheless, the knowledge on the distribution of Cochliobolus VelB and its implication in pathogenicity and fungicide resistance are often lacking. By scanning through the annotated genomes of C. lunatus, C. heterostrophus, C. carbonum, C. victoriae, C. sativus and C. miyabeanus, it is revealed that the numbers of ortholog VelB and cognates vary. By using the phylogenetic approach, it is established that the diversification rates among velvet-domain-containing proteins for phytopathogenic Cochliobolus species could impact differently on their oxidant and fungicide resistance potentials, ability to form appressoria-like structures and infection pegs during infection. This study provides new insights into the pathogenicity evolution of Cochliobolus species at the VelB locus which is relevant for designing effective strategies for durable management of Cochliobolus diseases.  相似文献   

20.
The most potent corticosteroids are 11beta-hydroxylated compounds. In humans, two cytochrome P450 isoenzymes with 11beta-hydroxylase activity, catalysing the biosynthesis of cortisol and aldosterone, are present in the adrenal cortex. CYP11B1, the gene encoding 11beta-hydroxylase (P450c11), is expressed on high levels in the zona fasciculata and is regulated by ACTH. CYP11B2, the gene encoding aldosterone synthase (P450c11Aldo), is expressed in the zona glomerulosa under primary control of the renin-angiotensin system. Aldosterone synthase has 11beta-hydroxylase activity as well as 18-hydroxylase activity and 18-oxidase activity. The substrate for CYP11B2 is 11-deoxycorticosterone, that of CYP11B1 is 11-deoxycortisol. Mutations in CYP11B1 cause congenital adrenal hyperplasia (CAH) due to 11beta-hydroxylase deficiency. This disorder is characterized by androgen excess and hypertension. Mutations in CYP11B2 cause congenital hypoaldosteronism (aldosterone synthase deficiency) which is characterized by life-threatening salt loss, failure to thrive, hyponatraemia and hyperkalaemia in early infancy. Both disorders have an autosomal recessive inheritance. Classical and nonclassical forms of 11beta-hydroxylase deficiency can be distinguished. Studies in heterozygotes for classical 11beta-hydroxylase deficiency show inconsistent results with no or only mild hormonal abnormalities (elevated plasma levels of 11-deoxycortisol after ACTH stimulation). In infants with congenital hypoaldosteronism, a comparable frequency of 18-hydroxylase deficiency (aldosterone synthase deficiency type I) and of 18-oxidase deficiency (aldosterone synthase deficiency type II) can be found. Molecular genetic studies of the CYP11B1 and CYP11B2 genes in 11beta-hydroxylase deficiency or aldosterone synthase deficiency have led to the identification of several mutations. Transfection experiments showed loss of enzyme activity in vitro. In some of the patients with 18-oxidase deficiency (aldosterone synthase deficiency type II) no mutations in the CYP11B2 gene were identified. Refined methods for steroid determination are the basis for the diagnosis of inborn errors of steroidogenesis. Molecular genetic studies are complementary; on the one hand, they have practical importance for the prenatal diagnosis of virilizing CAH forms and on the other hand, they are of theoretical importance in terms of our understanding of the functioning of cytochrome P450 enzymes. Copyrightz1999S.KargerAG, Basel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号