首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
SC-3 cells derived from mouse mammary carcinoma (Shinogi carcinoma 115) exhibit remarkable growth enhancement and cell morphology change in response to androgen stimuli. These events are mediated through an androgen-induced growth factor (AIGF). Amino acid sequence deduced from cDNA reveals that AIGF has 215 amino acids with a signal peptide and scattered regions homologous to fibroblast growth factor (FGF) family proteins. The biological ability of AIGF to stimulate SC-3 cell growth is inhibited by heparin or suramin. More importantly, antisense oligodeoxynucleotide of AIGF can block androgen-induced growth of SC-3 cells. Upon synthesis under the control of androgen, AIGF is immediately secreted into the extracellular space without intracellular accumulation. At the early phase (18–24 h) of androgen stimulation, however, AIGF is mainly associated with the glycosaminoglycan on the cell surface or extracellular matris. In addition, treatment of SC-3 cells with sulfation blocker (chlorate) or heparitinase results in the abolishment of their ability to respond to androgen or AIGF, indicating that heparan sulfate has important roles for condensing AIGF on or near cell surface as well as potentiating the biological activity of AIGF. Then, AIGF can bind to the FGF receptor. Northern blot analysis and cDNA cloning indicate that SC-3 cells predominantly express the FGF receptor 1 with some altered amino acid sequences. Transfection of expression vectors of AIGF and this variant from of FGF receptor 1 into FGF receptor-negative myoblast cells (L 6 cells) confirms that a variant from of FGF receptor 1 is a receptor of AIGF. These results clearly demonstrate that an autocrine mechanism is operating in androgen-induced growth of SC-3 cells.  相似文献   

3.
Summary We have previously reported that Reuber H-35 rat hepatoma cells secrete an autocrine growth-stimulating activity in serum-free culture. To characterize this activity, conditioned serum-free medium from dense H-35 donor cultures was collected in the absence and presence of [35S]methionine. A 1∶4 dilution of conditioned medium into fresh serum-free medium resulted in an increase in mean H-35 cell numbers per assay dish from 1.59±0.12×105 to 3.35±0.34×105 after 44 h of incubation. Control, unconditioned medium, resulted in significantly (P<0.05) less growth (2.14±0.41×105 cells per dish). Trypsin digestion eliminated the growth-promoting effect of conditioned medium but had no effect on unconditioned medium. Dialysis did not diminish the growth-promoting activity of conditioned medium. The immunoprecipitate of [35S]methionine-containing conditioned medium with antisera against rat serum transferrin contained a dominant radioactive doublet of molecular weight equal to purified rat serum transferrin. A rat transferrin radioimmunoassay was devised and used to quantitate that 29.1±1.2 ng of transferrin was secreted per 106 cells per hour in serum-free culture. Addition of antitransferrin antibody resulted in a significant (P<0.025) decrease in H-35 cell growth after 48 h. Thus, a portion of the autocrine growth-promoting activity secreted by H-35 cells into serum-free culture is due to transferrin. This work was funded by a feasibility grant from the American Diabetes Association, as well as by grants CA 24604-09 and CA 16463-14 from The National Institutes of Health, Bethesda, MD.  相似文献   

4.
Polypeptide growth factors, including members of the fibroblast growth factor (FGF) family, play an important role in the growth and maintenance of the normal prostate. We have found that FGF9 is expressed at high levels in the normal peripheral and transition zone of the human prostate. Analysis of FGF9 production by primary cultures of prostatic epithelial and stromal cells has shown that FGF9 is produced and secreted by the prostatic stromal cells. Neither of these processes appears to be modulated by androgens. Production of FGF9 by stromal cells in vivo was confirmed by immunohistochemistry. FGF9 is a potent mitogen for both prostatic epithelial and stromal cells in culture and is a more potent mitogen for these cells than either FGF2 or FGF7, two other FGFs expressed in the human prostate. FGF9 is an abundant secreted growth factor that can act as both a paracrine mitogen for epithelial cells and an autocrine mitogen for stromal cells. Western blot analysis of tissue extracts from the normal and hyperplastic transition zone shows that FGF9 is present at two to threefold higher levels in the hyperplastic transition zone. Overexpression of this paracrine and autocrine growth factor may play an important role in the epithelial and stromal proliferation in benign prostatic hyperplasia. J. Cell. Physiol. 180:53–60, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

5.
We have already reported that reactive oxygen species (ROS) promote rat ascites hepatoma cell invasion beneath mesentery-derived mesothelial cell monolayer. To investigate the mechanism for this, we examined the involvement of motility factors, particularly hepatocyte growth factor (HGF). Rat ascites hepatoma cell line of AH109A expressed HGF and c-Met mRNAs. Treatment with ROS augmented amounts of HGF mRNA in AH109A and HGF concentration in the medium. ROS also induced HGF gene expression in mesothelial cells. Exogenously added HGF enhanced invasive activity of AH109A cells, but exerted no effect on proliferation. AH109A cells pretreated with ROS showed an increased invasive activity, which was cancelled by simultaneous pretreatment with anti-HGF antibody. These results suggest that the invasive activity of AH109A is mediated by the autocrine and paracrine pathways of HGF, and ROS potentiate invasive activity by inducing gene expression of HGF in AH109A and mesothelial cells.  相似文献   

6.
7.
Rapamycin, an immunosuppressant agent used in renal transplantation with antitumoral properties, has been reported to impair longitudinal growth in young individuals. As growth hormone (GH) can be used to treat growth retardation in transplanted children, we aimed this study to find out the effect of GH therapy in a model of young rat with growth retardation induced by rapamycin administration. Three groups of 4-week-old rats treated with vehicle (C), daily injections of rapamycin alone (RAPA) or in combination with GH (RGH) at pharmacological doses for 1 week were compared. GH treatment caused a 20% increase in both growth velocity and body length in RGH animals when compared with RAPA group. GH treatment did not increase circulating levels of insulin-like growth factor I, a systemic mediator of GH actions. Instead, GH promoted the maturation and hypertrophy of growth plate chondrocytes, an effect likely related to AKT and ERK1/2 mediated inactivation of GSK3β, increase of glycogen deposits and stabilization of β-catenin. Interestingly, GH did not interfere with the antiproliferative and antiangiogenic activities of rapamycin in the growth plate and did not cause changes in chondrocyte autophagy markers. In summary, these findings indicate that GH administration improves longitudinal growth in rapamycin-treated rats by specifically acting on the process of growth plate chondrocyte hypertrophy but not by counteracting the effects of rapamycin on proliferation and angiogenesis.  相似文献   

8.
9.
V Wells  L Mallucci 《Cell》1991,64(1):91-97
Murine beta-galactoside-binding protein, a protein classified as a soluble lectin, is shown to be a cell growth-regulatory molecule and a cytostatic factor. The growth-inhibitory effect is not related to lectin properties, and competition assays indicate that the protein binds to specific cell surface receptors with high affinity. It exerts control in G0 and at G2, both as a regulator of cell replication and as a cytostatic factor.  相似文献   

10.
11.
IL-13 has been proposed to be an autocrine growth factor for Hodgkin/Reed-Sternberg tumor cells (H/RS cells). Since we have recently identified and produced a novel IL-13 antagonist (IL-13E13K) that can suppress the biological activity of IL-13, here we examined whether IL-13E13K can inhibit growth of Hodgkin lymphoma (HL)-derived cell lines. IL-13E13K not only inhibited the growth of an unstimulated H/RS cell line (L1236) but also cells that were stimulated by exogenous IL-13 in a dose-dependent manner. Several HL-derived cell lines expressed IL-13 message and protein and message for various chains of IL-13R. H/RS cell lines expressed mRNA for the IL-13R alpha 1, IL-4R alpha, and IL-2R gamma chains. However, none of these cell lines expressed the IL-13R alpha 2 chain. An H/RS cell line (L1236) internalized the ligand-receptor complex after binding to a fusion protein composed of IL-13 and a mutated form of Pseudomonas exotoxin A (IL-13-PE38QQR, or IL-13 cytotoxin), as IL-13 cytotoxin was specifically cytotoxic to H/RS cells in vitro. These results indicate that IL-13E13K and IL-13 cytotoxin can effectively suppress growth of a L1236 H/RS cell line. Therefore, additional studies should be performed to determine the expression of IL-13 and IL-13R in primary clinical samples of Hodgkin's lymphoma and both agents should be further tested in vitro and in vivo as possible therapeutic agents for HL.  相似文献   

12.
Effects of inoculum cell density on mammalian cell growth in culture have been observed in a variety of experimental systems. Although these effects have been attributed generally to medium conditioning by the cells, there has previously been no quantitative theory proposed for this phenomenon based on developments in molecular and cell biology. In this article, we offer such a theory founded on the regulatory action of autocrine growth factors. A particularly relevant example of these is platelet- derived growth factor (PDGF), which is produced by fibroblastic cells in response to stimulation by transforming growth factor beta (TGFbeta), a common serum constituent, and provides a mitogenic signal for the same cells. A simple mathematical model for the production, diffusive transport, and binding of autocrine growth factors to cell surface receptors, coupled to a model for the dependence of cell proliferation on growth factor receptor binding allows prediction of initial cell population growth rate as a function of inoculum cell density. We focus on situations involving anchorage-dependent cell growth, in which the cells are attached to a surface. A number of clear results are obtained, most notably the following: 1) for cells cultured on spherical microcarrier bead surfaces, the inoculum cell density needed to produce a given growth rate is linearly proportional to the bead radius; and 2) all other factors being equal, the inoculum cell density on a unit surface area basis needed to produce a given growth rate is greater for spherical microcarrier surfaces than for flat culture dish surfaces. These two results are consistent with the experimental observations of Hu and coworkers(1,2) for fibroblast growth in minimal medium plus serum. The model also allows elucidation of the influence of other system parameters, both biological and physical, on initial cell proliferation rate and the inoculum cell density dependence.  相似文献   

13.
Increased glomerularprostaglandin E2 (PGE2) production isassociated with the progression of diseases such as membranous nephropathy, nephrotic syndrome, and anti-Thy1 nephritis. Weinvestigated the signaling pathways that regulate the synthesis andactions of PGE2 in glomerular podocytes. To study itsactions, we assessed the ability of PGE2 to regulate theproduction of its own precursor, arachidonic acid (AA), in a mousepodocyte cell line. PGE2 dose-dependently reduced phorbolester (PMA)-mediated AA release. Inhibition of PMA-stimulated AArelease by PGE2 was found to be cAMP/PKA-dependent, becausePGE2 significantly increased levels of this secondmessenger, whereas the inhibitory actions of PGE2 werereversed by PKA inhibition and reproduced by the cAMP-elevating agentsforskolin and IBMX. PGE2 synthesis in this podocyte cellline increased fourfold at 60 min in response to PMA, coinciding withupregulation of cyclooxygenase (COX)-2 but not COX-1 levels. However,PGE2 synthesis was significantly reduced by COX-1-selectiveinhibition, yet to a lesser extent by COX-2-selective inhibition. Ourfindings suggest that PMA-stimulated PGE2 synthesis inmouse podocytes requires both basal COX-1 activity and induced COX-2expression, and that PGE2 reduces PMA-stimulated AA releasein a cAMP/PKA-dependent manner. Such an autocrine regulatory loop mighthave important consequences for podocyte and glomerular function in thecontext of renal diseases involving PGE2 synthesis.

  相似文献   

14.
15.
The neuroprotective effect and molecular mechanisms underlying preconditioning with N-methyl-D-aspartate (NMDA) in cultured hippocampal neurons have not been described. Pre-incubation with subtoxic concentrations of the endogenous neurotransmitter glutamate protects vulnerable neurons against NMDA receptor-mediated excitotoxicity. As a result of physiological preconditioning, NMDA significantly antagonizes the neurotoxicity resulting from subsequent exposure to an excitotoxic concentration of glutamate. The protective effect of glutamate or NMDA is time- and concentration-dependent, suggesting that sufficient agonist and time are required to establish an intracellular neuroprotective state. In these cells, the TrkB ligand, brain-derived neurotrophic factor (BDNF) attenuates glutamate toxicity. Therefore, we tested the hypothesis that NMDA protects neurons via a BDNF-dependent mechanism. Exposure of hippocampal cultures to a neuroprotective concentration of NMDA (50 microM) evoked the release of BDNF within 2 min without attendant changes in BDNF protein or gene expression. The accumulated increase of BDNF in the medium is followed by an increase in the phosphorylation (activation) of TrkB receptors and a later increase in exon 4-specific BDNF mRNA. The neuroprotective effect of NMDA was attenuated by pre-incubation with a BDNF-blocking antibody and TrkB-IgG, a fusion protein known to inhibit the activity of extracellular BDNF, suggesting that BDNF plays a major role in NMDA-mediated survival. These results demonstrate that low level stimulation of NMDA receptors protect neurons against glutamate excitotoxicity via a BDNF autocrine loop in hippocampal neurons and suggest that activation of neurotrophin signaling pathways plays a key role in the neuroprotection of NMDA.  相似文献   

16.
17.
Vasculotropin (VAS), also called vascular endothelial growth factor (VEGF) or vascular permeability factor, is a secreted growth factor whose target cell specificity has been reported as restricted to vascular endothelium. Its effects are mediated by at least two distinct membrane-spanning tyrosine kinase receptors, KDR and flt-1, the expression of which also seems restricted to vascular endothelium. We describe here that cultured human retinal pigment epithelial (HRPE) cells express both KDR and flt-1 receptors, bind VAS/VEGF on two high affinity sites (apparent Kd of 9 and 210 pM corresponding to 940 and 18,800 sites per cell) and proliferate or migrate upon recombinant VAS/VEGF addition. HRPE cells also express the mRNA corresponding to the 121 and 165 amino acid forms of VAS/VEGF. HRPE cells release in their own culture medium and store in their extracellular matrix self-mitogenic and chemoattractant factors indistinguishable from 121 and 165 VAS/VEGF isoforms. The autocrine role of VAS/VEGF was confirmed by the inhibition of these bioactivities by neutralizing specific anti-VAS/VEGF antibodies. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Stimulation of normal human foreskin fibroblasts with platelet-derived growth factor (PDGF) was inhibited by the addition of the synthetic double-stranded RNA polyinosinic-polycytidylic acid (poly-I:C) as measured by incorporation of 3H-thymidine (3H-TdR). Single-stranded polycytidylic or polyinosinic acid had no effect. Double-stranded RNA is an inducer of interferon-beta (IFN-beta) in fibroblasts. On the mRNA level, an expression of IFN-beta 2 but not of IFN-beta 1 was seen after addition of PDGF and/or poly-I:C. The inhibition of PDGF-induced mitogenesis was completely blocked by an antiserum to IFN-beta. Poly-I:C did not interfere with PDGF binding to its receptor, nor did it block protein synthesis, indicating that the inhibition is not due to a nonspecific toxic effect of the double-stranded RNA but rather is mediated by IFN-beta. The present study implies that the IFN-beta system in fibroblasts is a very potent autocrine inhibitory pathway.  相似文献   

19.
《Free radical research》2013,47(5):404-412
Abstract

Nerve growth factor (NGF) is one of the several structurally related proteins, named neurotrophins (NTs), that regulate neuronal survival, development, function, and plasticity. Moreover, NGF is an important activator of antioxidant mechanisms. These NGF functions are mediated by tropomyosin-related kinase receptor A (TrkA). Although NTs and their receptors have been shown to be expressed in visceral tissues, the extent to which NTs are involved in the physiology of visceral tissues is less clear. NGF is the most expressed NT in adult mouse livers. Although NGF is an important modulator of antioxidant mechanisms in neural tissues, few studies describe the relationship between oxidative stress and NGF expression in the liver. In this study, we demonstrate that ngfb mRNA is positively modulated in mouse livers after oxidative injury via intraperitoneal injection of 14 mg/kg sodium arsenite, 6 mmol/kg L-buthionine-S-R-sulfoximine (BSO), or 300 mg/kg acetaminophen (APAP). In addition to the upregulation of ngfb, we observed the phosphorylation of the NGF high-af?nity receptor TrkA in the liver as well as the downstream phosphorylation of Akt, NF-kB nuclear migration and iκbα and tx-1 mRNA upregulation. These effects were abolished when a neutralizing anti-NGF antibody was used. Furthermore, this anti-NGF antibody alone induced oxidative stress in the liver by decreasing the reduced glutathione, increasing the oxidized glutathione, and downregulating tx-1 mRNA. Thus, NGF plays a critical role in liver protection against oxidative stress and xenobiotic injury as well as maintains a reduced thiol state.  相似文献   

20.
Transforming growth factor-beta (TGF-beta) exerts profound inhibitory effects on a number of cell types, including normal B- and T-lymphocytes. In contrast, we have found a number of lymphoid tumor cell lines to be insensitive to the antiproliferative effects of TGF-beta 1 or TGF-beta 2. Binding and cross-linking with radioiodinated TGF-beta 1 demonstrated either low or absent expression of all three TGF-beta receptor species on three B-cell tumor lines, but T-cell and non-T, non-B tumors expressed large numbers of receptors. Treatment of the B-cell lines with phorbol 12-myristate 13-acetate (PMA) induced the expression of TGF-beta receptors and inhibited proliferation in all three lines in a dose- and time-dependent manner. The cell lines constitutively produced TGF-beta mRNA and released small amounts of latent TGF-beta; however, PMA induced the release of active TGF-beta. A neutralizing antibody to TGF-beta was able to reverse the PMA-induced growth inhibition of the malignant lymphoma cell line, RL, and addition of exogenous TGF-beta reversed the effect of the neutralizing antibody. Thus, TGF-beta can inhibit human lymphoma cell growth in vitro through an autocrine mechanism. Some lymphoma cells appear to have escaped from TGF-beta negative regulation by failing to express functional TGF-beta receptors and/or by failing to secrete active TGF-beta receptors and/or by failing to acts to inhibit lymphoma cell growth is by inducing the expression of TGF-beta receptors and the secretion of active TGF-beta, thereby reestablishing an autocrine growth-inhibitory loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号