首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Energetic basis of molecular recognition in a DNA aptamer   总被引:1,自引:0,他引:1  
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC-3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T(m)=50.2+/-0.2 degrees C and a folding enthalpy DeltaH(0)(fold)=-49.0+/-2.1 kcal mol(-1). These values agree with values of T(m)=49.6 degrees C and DeltaH(0)(fold)=-51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T(m) of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy DeltaG(0)(bind)=-5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with DeltaH(0)(bind)=-8.7 kcal mol(-1). Combination of enthalpy and free energy produce an unfavorable entropy of -TDeltaS(0)=+3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K(-1) was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures. From the calculated changes in solvent accessible surface areas of these structures a molar heat capacity change of -125 cal mol(-1) K(-1) was calculated, a value in excellent agreement with the experimental value. The thermodynamic signature, along with the coupled CD spectral changes, suggest that the binding of L-argininamide to its DNA aptamer is an induced-fit process in which the binding of the ligand is thermodynamically coupled to a conformational ordering of the nucleic acid.  相似文献   

2.
BACKGROUND: The 3.0 A crystal structure of the vitamin B(12) RNA aptamer revealed an unusual tertiary structure that is rich in novel RNA structural motifs. Important details of the interactions that stabilize noncanonical base pairing and the role of solvent in the structure were not apparent owing to the limited resolution. RESULTS: The structure of the vitamin B(12) RNA aptamer in complex with its ligand has been determined at 2.3 A resolution by X-ray crystallography. The crystallographic asymmetric unit contains five independent copies of the aptamer-vitamin B(12) complex, making it possible to accurately define well-conserved features. The core of the aptamer contains an unusual water-filled channel that is buried between the three strands of an RNA triplex. Well-ordered water molecules positioned within this channel form bridging hydrogen bonds and stabilize planar base triples that otherwise lack significant direct base-base contacts. The water channel terminates at the interface between the RNA and the bound ligand, leaving a pair of water molecules appropriately positioned to hydrogen bond with the highly polarized cyanide nitrogen of vitamin B(12). Analysis of the general solvation patterns for each nucleotide suggests that water molecules are not precisely positioned, as observed in previous RNA duplex structures, but instead might adjust in response to the varying local environment. Unusual intermolecular base pairing contributes to the formation of three different dimerization contacts that drive formation of the crystal lattice. CONCLUSIONS: The structure demonstrates the important role of water molecules and noncanonical base pairing in driving the formation of RNA tertiary structure and facilitating specific interactions of RNAs with other molecules.  相似文献   

3.
Prion proteins (PrPs) cause prion diseases, such as bovine spongiform encephalopathy. The conversion of a normal cellular form (PrPC) of PrP into an abnormal form (PrPSc) is thought to be associated with the pathogenesis. An RNA aptamer that tightly binds to and stabilizes PrPC is expected to block this conversion and to thereby prevent prion diseases. Here, we show that an RNA aptamer comprising only 12 residues, r(GGAGGAGGAGGA) (R12), reduces the PrPSc level in mouse neuronal cells persistently infected with the transmissible spongiform encephalopathy agent. Nuclear magnetic resonance analysis revealed that R12, folded into a unique quadruplex structure, forms a dimer and that each monomer simultaneously binds to two portions of the N-terminal half of PrPC, resulting in tight binding. Electrostatic and stacking interactions contribute to the affinity of each portion. Our results demonstrate the therapeutic potential of an RNA aptamer as to prion diseases.  相似文献   

4.
Potential applications for functional RNAs are rapidly expanding, not only to address functions based on primary nucleotide sequences, but also by RNA aptamer, which can suppress the activity of any target molecule. Aptamers are short DNA or RNA folded molecules that can be selected in vitro on the basis of their high affinity for a target molecule. Here, we demonstrate the ability of RNA aptamers to recognize--and bind to--human IgG with high specificity and affinity. An optimized 23-nucleotide aptamer, Apt8-2, was prepared, and was shown to bind to the Fc domain of human IgG, but not to other IgG's, with high affinity. Apt8-2 was observed to compete with protein A, but not with the Fcgamma receptor, for IgG binding. NMR chemical-shift analyses localized the aptamer-binding sites on the Fc subdomain, which partially overlaps the protein A binding site but not the Fcgamma receptor binding site. The tertiary structures of the predicted recognition sites on the Fc domain differ significantly between human IgG and other species of IgGs; this, in part, accounts for the high specificity of the selected aptamer. Apt8-2 can therefore be used as a protein A alternative for affinity purification of human IgG and therapeutic antibodies. Using Apt8-2 would have several potential advantages, raising the possibility of developing new applications based on aptamer design.  相似文献   

5.
Koizumi M  Breaker RR 《Biochemistry》2000,39(30):8983-8992
Two classes of RNA aptamers that bind the second messenger adenosine 3',5'-cyclic monophosphate (cAMP; 1) were isolated from a random-sequence pool using in vitro selection. Class I and class II aptamers are formed by 33- and 31-nucleotide RNAs, respectively, and each is comprised of similar stem-loop and single-stranded structural elements. Class II aptamers, which dominate the final selected RNA population, require divalent cations for complex formation and display a dissociation constant (K(D)) for cAMP of approximately 10 microM. A representative class II aptamer exhibits substantial discrimination against 5'- and 3'-phosphorylated nucleosides such as ATP, 5'-AMP, and 3'-AMP. However, components of cAMP such as adenine and adenosine also are bound, indicating that the adenine moiety is the primary positive determinant of ligand binding. Specificity of cAMP binding appears to be established by hydrogen bonding interactions with the adenine base as well as by steric interactions with groups on the ribose moiety. In addition, the aptamer recognizes 8,5'-O-cycloadenosine (2) but not N(3), 5'-cycloadenosine (3), indicating that this RNA might selectively recognize the anti conformation of the N-glycosidic bond of cAMP.  相似文献   

6.
7.
8.
Flavin recognition by an RNA aptamer targeted toward FAD   总被引:2,自引:0,他引:2  
Flavin adenine dinucleotide (FAD) is one of the primary cofactors in biological redox reactions. Designing cofactor-dependent redox ribozymes could benefit from studies of new RNA-cofactor complexes, as would our understanding of ribozyme evolution during an RNA World. We have therefore used the SELEX method to identify RNA aptamers that recognize FAD. Functional analysis of mutant aptamers, S1 nuclease probing, and comparative sequence analysis identified a simple, 45 nt helical structure with several internal bulges as the core-binding element. These aptamers recognize with high specificity the isoalloxazine nucleus of FAD but do not distinguish FAD from FADH(2), nor are they removed from an FAD resin with UMP (which shares a pattern of hydrogen bond donors and acceptors along one face). Thus, these aptamers are structurally and functionally distinct from previously identified FMN and riboflavin aptamers. Circular dichroism data suggest a conformational change in the RNA upon FAD binding. These aptamers require magnesium and are active across a wide pH range (4.5-8.9). Since general acid-base catalysis plays a role in some flavin-dependent redox reaction mechanisms, these aptamers may be particularly well-suited to the design of new redox ribozymes.  相似文献   

9.
10.
A pseudoknot-containing aptamer isolated from a pool of random sequence molecules has been shown previously to represent an optimal RNA solution to the problem of binding biotin. The affinity of this RNA molecule is nonetheless orders of magnitude weaker than that of its highly evolved protein analogs, avidin and streptavidin. To understand the structural basis for biotin binding and to compare directly strategies for ligand recognition available to proteins and RNA molecules, we have determined the 1.3 A crystal structure of the aptamer complexed with its ligand. Biotin is bound at the interface between the pseudoknot's stacked helices in a pocket defined almost entirely by base-paired nucleotides. In comparison to the protein avidin, the aptamer packs more tightly around the biotin headgroup and makes fewer contacts with its fatty acid tail. Whereas biotin is deeply buried within the hydrophobic core in the avidin complex, the aptamer relies on a combination of hydrated magnesium ions and immobilized water molecules to surround its ligand. In addition to demonstrating fundamentally different approaches to molecular recognition by proteins and RNA, the structure provides general insight into the mechanisms by which RNA function is mediated by divalent metals.  相似文献   

11.
We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP. The fluorescence emission intensity increased upon formation of a RNA-based QF-MAB·ATP complex.  相似文献   

12.
The structural basis of molecular adaptation   总被引:10,自引:21,他引:10  
The study of molecular adaptation has long been fraught with difficulties, not the least of which is identifying out of hundreds of amino acid replacements those few directly responsible for major adaptations. Six studies are used to illustrate how phylogenies, site- directed mutagenesis, and a knowledge of protein structure combine to provide much deeper insights into the adaptive process than has hitherto been possible. Ancient genes can be reconstructed, and the phenotypes can be compared to modern proteins. Out of hundreds of amino acid replacements accumulated over billions of years those few responsible for discriminating between alternative substrates are identified. An amino acid replacement of modest effect at the molecular level causes a dramatic expansion in an ecological niche. These and other topics are creating the emerging field of "paleomolecular biochemistry."   相似文献   

13.
BACKGROUND: Aminoglycoside antibiotics can target RNA folds with micromolar affinity and inhibit biological processes ranging from protein biosynthesis to ribozyme action and viral replication. Specific features of aminoglycoside antibiotic-RNA recognition have been probed using chemical, biochemical, spectroscopic and computational approaches on both natural RNA targets and RNA aptamers identified through in vitro selection. Our previous studies on tobramycin-RNA aptamer complexes are extended to neomycin B bound to its selected RNA aptamer with 100 nM affinity. RESULTS: The neamine moiety (rings I and II) of neomycin B is sandwiched between the major groove floor of a 'zippered-up' G.U mismatch aligned segment and a looped-out purine base that flaps over the bound antibiotic. Specific intermolecular hydrogen bonds are observed between the charged amines of neomycin B and base mismatch edges and backbone phosphates. These interactions anchor 2-deoxystreptamine ring I and pyranose ring II within the RNA-binding pocket. CONCLUSIONS: The RNA aptamer complexes with tobramycin and neomycin B utilize common architectural principles to generate RNA-binding pockets for the bound aminoglycoside antibiotics. In each case, the 2-deoxystreptamine ring I and an attached pyranose ring are encapsulated within the major groove binding pocket, which is lined with mismatch pairs. The bound antibiotic within the pocket is capped over by a looped-out base and anchored in place through intermolecular hydrogen bonds involving charged amine groups of the antibiotic.  相似文献   

14.
Efficient splicing of the 325-nt yeast (Saccharomyces cerevisiae) rp51b intron requires the presence of two short interacting sequences located 200 nt apart. We used the powerful technique of randomization-selection to probe the overall structure of the intron and to investigate its role in pre-mRNA splicing. We identified a number of alternative RNA-RNA interactions in the intron that promote efficient splicing, and we showed that similar base pairings can also improve splicing efficiency in artificially designed introns. Only a very limited amount of structural information is necessary to create or maintain such a mechanism. Our results suggest that the base pairing contributes transiently to the spliceosome assembly process, most likely by complementing interactions between splicing factors. We propose that splicing enhancement by structure represents a general mechanism operating in large yeast introns that evolutionarily preceded the protein-based splicing enhancers of higher eukaryotes.  相似文献   

15.
Pseudouridine synthases catalyze the isomerization of specific uridines to pseudouridine in a variety of RNAs, yet the basis for recognition of the RNA sites or how they catalyze this reaction is unknown. The crystal structure of pseudouridine synthase I from Escherichia coli, which, for example, modifies positions 38, 39 and/or 40 in tRNA, reveals a dimeric protein that contains two positively charged, RNA-binding clefts along the surface of the protein. Each cleft contains a highly conserved aspartic acid located at its center. The structural domains have a topological similarity to those of other RNA-binding proteins, though the mode of interaction with tRNA appears to be unique. The structure suggests that a dimeric enzyme is required for binding transfer RNA and subsequent pseudouridine formation.  相似文献   

16.
Mammalian polynucleotide kinase 3' phosphatase (PNK) plays a key role in the repair of DNA damage, functioning as part of both the nonhomologous end-joining (NHEJ) and base excision repair (BER) pathways. Through its two catalytic activities, PNK ensures that DNA termini are compatible with extension and ligation by either removing 3'-phosphates from, or by phosphorylating 5'-hydroxyl groups on, the ribose sugar of the DNA backbone. We have now determined crystal structures of murine PNK with DNA molecules bound to both of its active sites. The structure of ssDNA engaged with the 3'-phosphatase domain suggests a mechanism of substrate interaction that assists DNA end seeking. The structure of dsDNA bound to the 5'-kinase domain reveals a mechanism of DNA bending that facilitates recognition of DNA ends in the context of single-strand and double-strand breaks and suggests a close functional cooperation in substrate recognition between the kinase and phosphatase active sites.  相似文献   

17.
In vivo recognition of an RNA aptamer by its transcription factor target   总被引:2,自引:0,他引:2  
Cassiday LA  Maher LJ 《Biochemistry》2001,40(8):2433-2438
  相似文献   

18.
CRM (chloroplast RNA splicing and ribosome maturation) is a recently recognized RNA-binding domain of ancient origin that has been retained in eukaryotic genomes only within the plant lineage. Whereas in bacteria CRM domains exist as single domain proteins involved in ribosome maturation, in plants they are found in a family of proteins that contain between one and four repeats. Several members of this family with multiple CRM domains have been shown to be required for the splicing of specific plastidic group II introns. Detailed biochemical analysis of one of these factors in maize, CRS1, demonstrated its high affinity and specific binding to the single group II intron whose splicing it facilitates, the plastid-encoded atpF intron RNA. Through its association with two intronic regions, CRS1 guides the folding of atpF intron RNA into its predicted "catalytically active" form. To understand how multiple CRM domains cooperate to achieve high affinity sequence-specific binding to RNA, we analyzed the RNA binding affinity and specificity associated with each individual CRM domain in CRS1; whereas CRM3 bound tightly to the RNA, CRM1 associated specifically with a unique region found within atpF intron domain I. CRM2, which demonstrated only low binding affinity, also seems to form specific interactions with regions localized to domains I, III, and IV. We further show that CRM domains share structural similarities and RNA binding characteristics with the well known RNA recognition motif domain.  相似文献   

19.
The Ro autoantigen is ring-shaped, binds misfolded noncoding RNAs and is proposed to function in quality control. Here we determine how Ro interacts with misfolded RNAs. Binding of Ro to misfolded precursor (pre)-5S ribosomal RNA requires a single-stranded 3' end and helical elements. As mutating most sequences of the helices and tail results in modest decreases in binding, Ro may be able to associate with a range of RNAs. Ro binds several other RNAs that contain single-stranded tails. A crystal structure of Ro bound to a misfolded pre-5S rRNA fragment reveals that the tail inserts into the cavity, while a helix binds on the surface. Most contacts of Ro with the helix are to the backbone. Mutagenesis reveals that Ro has an extensive RNA-binding surface. We propose that Ro uses this surface to scavenge RNAs that fail to bind their specific RNA-binding proteins.  相似文献   

20.
Hu proteins bind to adenosine-uridine (AU)-rich elements (AREs) in the 3' untranslated regions of many short-lived mRNAs, thereby stabilizing them. Here we report the crystal structures of the first two RNA recognition motif (RRM) domains of the HuD protein in complex with an 11-nucleotide fragment of a class I ARE (the c-fos ARE; to 1.8 A), and with an 11-nucleotide fragment of a class II ARE (the tumor necrosis factor alpha ARE; to 2.3 A). These structures reveal a consensus RNA recognition sequence that suggests a preference for pyrimidine-rich sequences and a requirement for a central uracil residue in the clustered AUUUA repeats found in class II AREs. Comparison to structures of other RRM domain-nucleic acid complexes reveals two base recognition pockets in all the structures that interact with bases using residues in conserved ribonucleoprotein motifs and at the C-terminal ends of RRM domains. Different conformations of nucleic acid can be bound by RRM domains by using different combinations of base recognition pockets and multiple RRM domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号