首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incorporation of [3H]acetate into chondroitin sulphate was used as a measure of the rate of synthesis of this polysaccharide in whole tibias and femurs of embryonic chicken cartilage in vitro. The incorporation is inhibited by puromycin and by cycloheximide, but the inhibition is relieved by the addition of D-xylose, beta-D-xylosides and beta-D-galactosides to the incubation medium. Beta-D-Xylosides can stimulate the incorporation to 300% of that of controls incubated in the absence of cycloheximide or puromycin, D-Xylose, beta-D-xylosides and beta-D-galactosides appear to act as artificial initiators of chondroitin sulphate synthesis and enable polysaccharide-chain synthesis to be studied as an event separate from the synthesis of intact proteoglycan.  相似文献   

2.
3.
1. Whole tissue preparations and subcellular fractions from embryonic chicken cartilage were used to measure the rate of incorporation of inorganic sulphate into chondroitin sulphate in vitro. 2. In cartilage from 14-day-old embryos, [(35)S]sulphate is incorporated to an equal extent into chondroitin 4-sulphate and chondroitin 6-sulphate at a rate of 1.5nmoles of sulphate/hr./mg. dry wt. of cartilage. 3. Microsomal and soluble enzyme preparations from embryonic cartilage catalyse the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate into both chondroitin 4-sulphate and chondroitin 6-sulphate. 4. The effects of pH, ionic strength, adenosine 3'-phosphate 5'-sulphatophosphate concentration and acceptor chondroitin sulphate concentration on the soluble sulphotransferase activity were examined. These factors all influence the activity of the sulphotransferase, and pH and incubation time also influence the percentage of chondroitin 4-sulphate formed.  相似文献   

4.
The effect of cycloheximide on chondroitin sulphate biosynthesis was studied in bovine articular cartilage maintained in culture. Addition of 0.4 mM-cycloheximide to the culture medium was followed, over the next 4h, by a first-order decrease in the rate of incorporation of [35S]sulphate into glycosaminoglycan (half-life, t 1/2 = 32 min), which is consistent with the depletion of a pool of proteoglycan core protein. Addition of 1.0 mM-benzyl beta-D-xyloside increased the rate of incorporation of [35S]sulphate and [3H]acetate into glycosaminoglycan, but this elevated rate was also diminished by cycloheximide. It was concluded that cycloheximide exerted two effects on the tissue; not only did it inhibit the synthesis of the core protein, but it also lowered the tissue's capacity for chondroitin sulphate chain synthesis. Similar results were obtained with chick chondrocytes grown in high-density cultures. Although the exact mechanism of this secondary effect of cycloheximide is not known, it was shown that there was no detectable change in cellular ATP concentration or in the amount of three glycosyltransferases (galactosyltransferase-I, N-acetylgalactosaminyltransferase and glucuronosyltransferase-II) involved in chondroitin sulphate chain synthesis. The sizes of the glycosaminoglycan chains formed in the presence of cycloheximide were larger than those formed in control cultures, whereas those synthesized in the presence of benzyl beta-D-xyloside were consistently smaller, irrespective of the presence of cycloheximide. These results suggest that beta-D-xylosides must be used with caution to study chondroitin sulphate biosynthesis as an event entirely independent of proteoglycan core-protein synthesis, and they also indicate a possible involvement of the core protein in the activation of the enzymes of chondroitin sulphate synthesis.  相似文献   

5.
Addition of actinomycin D (or cordycepin, an alternative inhibitor of RNA synthesis) to cartilage cultures resulted in a first-order decrease in the rate of incorporation of [35S]sulphate into proteoglycan (half-life = 7.5 +/- 1.1 h). Addition of 1.0 mM-benzyl beta-D-xyloside relieved the initial inhibition of glycosaminoglycan synthesis induced by actinomycin D; however, after a lag of about 10 h the rate of xyloside-initiated glycosaminoglycan synthesis also decreased with apparent first-order kinetics (half-life = 7.1 +/- 1.8 h), which paralleled the decrease in the rate of core-protein-initiated glycosaminoglycan synthesis. The hydrodynamic size of the proteoglycans formed in the presence of actinomycin D remained essentially constant (Kav. 0.21-0.23), whereas the constituent glycosaminoglycan chains were larger than those formed by control cultures, which suggested that the core protein was substituted with fewer but larger glycosaminoglycan chains. Proteoglycans formed in the presence of beta-D-xyloside were significantly smaller (Kav. approximately 0.33) than those synthesized by control cultures, and were further diminished in size after exposure of cultures to actinomycin D. Glycosaminoglycan chains synthesized by these same cultures on to both core-protein and xyloside acceptors were also smaller than those of control cultures. The decrease in synthesis observed after exposure to actinomycin D was not reflected by any significant decrease in the activities of several glycosyltransferases involved in chondroitin sulphate synthesis (galactosyltransferase-I, galactosyltransferase-II, N-acetylgalactosaminyltransferase and glucuronosyltransferase-II).  相似文献   

6.
1. A system is described, which was used to incubate neonatal rat epiphysial cartilage in vitro with [U-(14)C]glucose and [(35)S]sulphate. 2. The acid glycosaminoglycans of neonatal rat epiphyses were extracted and fractionated on cetylpyridinium chloride-cellulose columns. The major components were chondroitin 4-sulphate (65%), chondroitin 6-sulphate (15%), hyaluronic acid (4%) and keratan sulphate (2%). 3. The acid-soluble nucleotides and intermediates of glycosaminoglycan synthesis were separated on a Dowex 1 (formate) system. The tissue contents and cellular concentrations of these metabolites were determined. 4. The rates of synthesis of UDP-glucuronic acid and UDP-N-acetyl-hexosamine from [U-(14)C]glucose were found to be 0.79+/-0.16 and 3.2+/-0.08nmol/min per g wet wt. respectively. 5. The incorporation of [U-(14)C]glucose into the uronic acid and hexosamine moieties of the polymers was also measured and the turnover rates of the glycosaminoglycans were calculated. It was found that chondroitin sulphate was turning over in about 70h and hyaluronic acid in about 120h. 6. The relative rates of synthesis of the sulphated glycosaminoglycans were calculated from [(35)S]sulphate incorporation and were found to be in good agreement with those obtained from [U-(14)C]glucose labelling.  相似文献   

7.
Chondroitin sulphate synthesis on proteoglycans was decreased in rat chondrosarcoma cell cultures in the presence of cycloheximide (0.1-1.0 muM) or p-nitrophenyl beta-D-xyloside (50 microM). In the presence of cycloheximide the proteoglycan monomer was of larger size, the chondroitin sulphate chains were increased in length, but a similar number of chains was attached to each proteoglycan and the size of the core protein was unaltered. In the presence of p-nitrophenyl beta-D-xyloside (50 microM), chondroitin sulphate synthesis was increased (by 60-80%), but the incorporation into proteoglycans was decreased (by 70%). The chondroitin sulphate chains were of shorter length than in control cultured and the number of chains attached to each proteoglycan was decreased. In cultures with cycloheximide or actinomycin D the synthesis of chondroitin sulphate was less inhibited on beta-xyloside than on endogenous proteoglycan. When the rate of chondroitin sulphate synthesis was decreased by lowering the temperature of cultures, the chains synthesized at 22 and 4 degrees C were much longer than at 37 degrees C, but in the presence of p-nitrophenyl beta-D-xyloside the chains were of the same length at all three temperatures. A model of chain elongation is thus proposed in which the rate of chain synthesis is determined by the concentration of xylosyl acceptor and the length of the chains is determined by the ratio of elongation activity to xylosyl-acceptor concentration.  相似文献   

8.
9.
10.
The only glycosaminoglycans that can be isolated from the ear cartilage of 2-month-old rabbits are chondroitin 4-sulphate and chondroitin 6-sulphate. These chondroitin sulphates exhibit molecular-weight polydispersity when isolated from tissue by papain digestion. The chondroitin sulphate is metabolically heterogeneous in that radioactive precursors [(14)C]glucose or [(35)S]sulphate are preferentially incorporated into the higher-molecular-weight polymers both in vivo and in vitro. No transfer of radioactivity from the high-molecular-weight chondroitin sulphate to the low-molecular-weight chondroitin sulphate was seen during 15 days in vivo. It is suggested that there are at least two pools of proteoglycan in the tissue. One of these pools is metabolically active whereas the other is not.  相似文献   

11.
Beta-Xylosides stimulate 2- to 6-fold the synthesis of glycosaminoglycans by three types of nonconnective tissue cells (RG-C6, NB41A, and rat hepatoma cells, and normal and simian virus 40 (SV40)-transformed normal human skin fibroblasts. The effect, which is specific for the anomeric linkage and the glycone, is observed in the presence and absence of puromycin. Beta-Xylosides may substitute for xylosylated core protein as initiators of synthesis of chondroitin sulfate chains. No stimulation of synthesis of heparan sulfate was observed. With the use of a fluorogenic xyloside, 4-methylumbelliferyl-beta-D-xyloside, it was demonstrated that the free chondroitin sulfate chains secreted into the medium bear the xyloside at the reducing end, and have an average molecular weight of 16,500.  相似文献   

12.
Total RNA was extracted from the cartilage tissues rat Swarm chondrosarcoma, neonatal-rat breastplate and embryonic-chicken sterna and translated in wheat-germ cell-free reactions. The core protein of the chondroitin sulphate proteoglycan subunit was identified among translation products of rat mRNA by its apparent Mr of 330 000 and by its immunoprecipitation with specific antisera prepared against rat or chicken proteoglycan antigens. The apparent Mr of the rat proteoglycan core protein is 8000-10000 less than that of the equivalent chicken cartilage core-protein product.  相似文献   

13.
Embryonic-chicken epiphyseal cartilage was incubated in vitro with a variety of beta-xylosides and the amount of [3H]acetate incorporation into chondroitin sulphate was determined under conditions when normal protein core production was inhibited by cycloheximide. The ability of the different beta-xylosides to relieve thea cycloheximide-mediated inhibition of chondroitin sulphate synthesis was influenced by the nature of the aglycan group of te xyloside. beta-Xylosides with apolar and uncharged aglycan groups were most effective and produced a severalfold stimulation of chondroitin sulphate biosynthesis. beta-Xylosides with charged aglycan groups were less effective initiators of chondroitin sulphate synthesis. The rate of galactose transfer from UDP-galactose to each of the beta-xylosides, catalysed by a cell-free microsomal preparation from embryonic cartilage, was measured. This study showed that the nature of the aglycan group of the beta-xyloside was a factor determining the capacity of the xyloside to act as an acceptor for galactosyltransferase I, the enzyme that catalyses the first galactose transfer reaction of chondroitin sulphate synthesis. The aglycan group of the xyloside also appeared to influence other steps leading to chondroitin sulphate chain initiation in vitro.  相似文献   

14.
15.
Cartilage from adult bovine hock joints was incubated with [3H]galactose or [35S]sulphate in the presence of benzyl beta-D-xyloside. Radioisotope incorporation into proteoglycan was inhibited by the xyloside; the magnitude of this inhibition depended on the concentration of xyloside used. With 0.2mM xyloside radioisotope incorporation into keratan sulphate was not altered but inhibition was observed at xyloside concentrations of 1.0mM or higher. The decrease in radioisotope incorporation into keratan sulphate in the presence of 1.0mM benzyl beta-xyloside was directly related to a reduction in the average length of the keratan sulphate chains. This effect of beta-xyloside on keratan sulphate biosynthesis was markedly different from its effect on chondroitin sulphate biosynthesis.  相似文献   

16.
17.
The D-glucuronosyl (GlcA)- and N-acetyl-D-galactosaminyl (GalNAc)-transferases involved in chondroitin sulphate biosynthesis were studied in a microsomal preparation from chick-embryo chondrocytes. Transfer of GlcA and GalNAc from their UDP derivatives to 3H-labelled oligosaccharides prepared from chondroitin sulphate and hyaluronic acid was assayed by h.p.l.c. of the reaction mixture. Conditions required for maximal activities of the two enzymes were remarkably similar. Activities were stimulated 3.5-6-fold by neutral detergents. Both enzymes were completely inhibited by EDTA and maximally stimulated by MnCl2 or CoCl2. MgCl2 neither stimulated nor inhibited. The GlcA transferase showed a sharp pH optimum between pH5 and 6, whereas the GalNAc transferase gave a broad optimum from pH 5 to 8. At pH 7 under optimal conditions, the GalNAc transferase gave a velocity that was twice that of the GlcA transferase. Oligosaccharides prepared from chondroitin 4-sulphate and hyaluronic acid were almost inactive as acceptors for both enzymes, whereas oligosaccharides from chondroitin 6-sulphate and chondroitin gave similar rates that were 70-80-fold higher than those observed with the endogenous acceptors. Oligosaccharide acceptors with degrees of polymerization of 6 or higher gave similar Km and Vmax. values, but the smaller oligosaccharides were less effective acceptors. These results are discussed in terms of the implications for regulation of the overall rates of the chain-elongation fractions in chondroitin sulphate synthesis in vivo.  相似文献   

18.
19.
20.
Calf cornea slices were incubated with [U-14C]glucose, in varying pO2 or lactate concentrations. Acid glycosaminoglycans were separated by ion-exchange chromatography after papain digestion. The percentage radioactivity incorporated into keratan sulphate increased markedly with decreased oxygen tension, whereas a concomitant relative decrease of the biosynthesis of glycosaminoglycuronans occurred. Similar results were obtained with increased lactate concentration. Our findings support the idea that keratan sulphate is a functional substitute for chondroitin sulphate in conditions of oxygen lack (Scott, J.E. and Haigh, M. (1988) J. Anat. 158, 95-108).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号