首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An intact cell assay system, based on Tween-80 permeabilization can be used to investigate ribonucleotide reductase activity in a variety of mammalian cell lines. An important consideration in the use of intact cells is the presence of other nucleotide metabolizing activities. The influence of these activities on estimates of pyrimidine (CDP) and purine (ADP) reductase in permeabilized hamster cells has been examined. Studies on the incorporation of label from CDP and ADP into RNA indicated that a very small proportion of the reductase substrates was eventually incorporated into RNA during routine enzyme assays, and would have no detectable effect on activity estimates. The possibility that the products of the reaction (dCDP and dADP) were eventually phosphorylated and incorporated into DNA was also examined, and it was found that proper permeabilization of the cells eliminated or greatly reduced loss of deoxyribonucleotides to DNA. An analysis by HPLC of nucleotides present during CDP and ADP reductase reactions showed that various kinases and phosphatases were active in permeabilized cells, as all levels of phosphorylation of nucleotide substrates and allosteric effectors were detected. The base composition of the nucleotides added to the assay systems were not altered. Although movement of phosphates occurred during the assay, the concentrations of substrates quickly reached equilibrium (within 1 min) with their respective nucleosides and nucleotides, resulting in a relatively constant although reduced concentration of CDP or ADP substrates during the 20-min assay. Similarly the levels of allosteric effectors, ATP for pyrimidine and dGTP for purine reductase activities, declined within the first minute of the assays and quickly reached an equilibrium with their respective adenine or guanine containing nucleotides during most of the reaction time. Although useful approximations of intracellular reductase activity can be obtained without correcting for modified nucleotide concentrations, precise determinations can be calculated when these alterations are taken into consideration. For example, estimates of intracellular Km values for CDP closely resembled those reported with highly purified mammalian enzyme preparations in other studies. Clearly, the intact cell assay system provides worthwhile information about mammalian ribonucleotide reductase in its physiologically relevant environment.  相似文献   

2.
We measured both pyridine nucleotide levels and ribonucleotide reductase-specific activity in Yoshida ascites hepatoma cells as a function of growth in vivo and during recruitment from non-cycling to cycling state in vitro. Oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADP) levels remained unchanged during tumour growth, while NADP+ and reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels were very high in exponentially growing cells and markedly decreased in the resting phase. Ribonucleotide reductase activity paralleled NADP(H) (NADP+ plus NADPH) intracellular content. The concomitant increase in both NADP(H) levels and ribonucleotide reductase activity was also observed during G1-S transition in vitro. Cells treated with hydroxyurea showed a comparable correlation between the pool size of NADP(H) and ribonucleotide reductase activity. On the basis of these findings, we suggest that fluctuations in NADP(H) levels and ribonucleotide reductase activity might play a critical role in cell cycle regulation.  相似文献   

3.
Assays of ribonucleotide reductase in extracts of Detroit 98 (human) cells were found to be complicated by the rapid depletion of the substrate (CDP) by nucleoside diphosphate kinase. Assays of either 100,000g supernatants or ammonium sulfate-fractionated extracts resulted in the conversion of >90% of the substrate to CTP within 2 min. It was therefore desirable to separate nucleoside diphosphate kinase from ribonucleotide reductase. Chromatography of the fractionated extract on an ATP-agarose column resulted in the delivery of nondissociated ribonucleotide reductase in the void volume and the retention of >99.9% of the nucleoside diphosphate kinase. The kinase could be eluted by 2 mm ATP. The ribonucleotide reductase was recovered from this commercially available gel with an apparent yield of >200%. It could be accurately assayed with only minimal extraneous depletion of substrate. Furthermore, it was stable to storage at ?80°C. Tris-HCl was found to inhibit the enzyme. When HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-Na buffer was used in place of Tris-HCl, the rate of CDP reduction was increased by 2.5-fold. Since the above procedure selectively removes nucleoside diphosphate kinase from crude preparations of ribonucleotide reductase, it should have general applicability for purifying ribonucleotide reductase from other sources.  相似文献   

4.
The synthesis of uric acid from purine bases, nucleosides and nucleotides has been measured in reaction mixtures containing rat liver supernatant and each one of the following compounds at 1 mM concentration (except xanthine, 0·5 mM and guanosine and guanine, 0·1 mM). The rates of the reaction, expressed as nanomoles of uric acid synthesized g?1 of wet liver min?1 were: ATP, 10; ADP, 37; AMP, 62; adenosine, 108; adenine 6; adenylo-succinate, 9; IMP 32; inosine, 112; hypoxanthine, 50; GTP, 19; GDP, 19; GMP, 27; guanosine, 34; guanine, 72; XMP, 10; xanthosine, 24; xanthine, 144. These figures divided by 55 correspond to nanomoles of uric acid synthesized min?1 per mg?1 of protein. The rate of synthesis of uric acid obtained with each one of those compounds at 0·1 and 0·05 mM concentrations was also determined. ATP (1 nM) strongly inhibited uric acid synthesis from 0·05 mM AMP (91 per cent) and from 0·05 mM ADP (88 per cent), but not from adenosine. CTP or UTP (1 mM ) also inhibited (by more than 90 per cent) the synthesis of uric acid from 0·05 mM AMP. Xanthine oxidase was inhibited by concentrations of hypoxanthine higher than 0·012 mM. The results favour the view that the level of uric acid in plasma may be an index of the energetic state of the organism. Allopurinol, besides inhibiting uric acid synthesis, reduced the rate of degradation of AMP. The ability of crude extracts to catabolize purine nucleotides to uric acid is an important factor to be considered when some enzymes related to purine nucleotide metabolism, particularly CTP synthase, are measured in crude liver extracts.  相似文献   

5.
The fluorescent 1,N6-ethenoadenosine derivatives of adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, 3′:5′-cyclic adenosine monophosphate, adenosine and nicotinamide adenine dinucleotide have been prepared. Paper and thin layer chromatographic purification methods have been developed. Nuclear magnetic resonance and mass spectrum data indicate that only the purine ring has been modified.The 1,N6-ethenoadenosine triphosphate had about 70% of the activity of adenosine triphosphate as a substrate for total adenosine triphosphatase activity of hypophysectomized rat liver membranes. The 1,N6-ethenoadenosine diphosphate had about 86% of the activity of adenosine diphosphate as a substrate for adenosine diphosphatase of hypophysectomized rat liver membranes. The 1,N6-etheno derivative of nicotinamide adenine dinucleotide had about 8% of the activity of nicotinamide adenine dinucleotide as a substrate for nicotinamide adenine dinucleotide glycohydrolase and about 54% of the activity of nicotinamide adenine dinucleotide as a substrate for nicotinamide adenine dinucleotide pyrophosphatase of hypophysectomized rat liver membranes.Km's for the ATPase, ADPase and yeast alcohol dehydrogenase using ε-ATP and ε-ADP and ε-NAD as substrates are presented.  相似文献   

6.
Phosphoenolpyruvate carboxykinases, depending on the enzyme origin, preferentially use adenine or guanine nucleotides as substrates. In this work, analyses of the substrate specificity of the Saccharomyces cerevisiae ATP-dependent enzyme have been carried out. Kinetics studies gave relative values of k(cat)/K(m) for the nucleoside triphosphate complexes in the order ATP>GTP>ITP>UTP>CTP. For the nucleoside diphosphate complexes the order is ADP>GDP>IDP congruent withUDP>CDP. This shows that the enzyme has a strong preference for ADP (or ATP) over other nucleotides, being this preference about an order of magnitude higher for the diphosphorylated than for the triphosphorylated nucleosides. The calculated binding free energies (kcalmol(-1)) at 25 degrees C are 7.39 and 6.51 for ATP and ADP, respectively. These values decrease with the nucleotide structure in the same order than the kinetic specificity. The binding energy for any triphosphorylated nucleoside is more favourable than for the corresponding diphosphorylated compound, showing the relevance of the P(gamma) for nucleotide binding. Homology models of the adenine and guanine nucleotides in complex with the enzyme show that the base adopts a similar conformation in the diphosphorylated nucleosides while in the triphosphorylated nucleosides the sugar-base torsion angle is 61 degrees for ATP and -53 degrees for GTP. Differences are also noted in the distance between P(beta) and Mn2+ at site 1. This distance is almost the same in the ATP, GTP, and UTP complexes, however in the ADP, GDP and UDP complexes it is 2.9, 5.1, and 7A, respectively. Experimental data obtained with a Thr463Ala mutant enzyme agree with molecular simulation predictions. The results here presented are discussed in terms of the proposed interactions of the nucleotides with the protein.  相似文献   

7.
The type 1 ribosome inactivating protein from Momordica balsamina (MbRIP1) has been shown to interact with purine bases, adenine and guanine of RNA/DNA. We report here the binding and structural studies of MbRIP1 with a pyrimidine base, cytosine; cytosine containing nucleoside, cytidine; and cytosine containing nucleotide, cytidine diphosphate. All three compounds bound to MbRIP1 at the active site with dissociation constants of 10?4 M–10?7 M. As reported earlier, in the structure of native MbRIP1, there are 10 water molecules in the substrate binding site. Upon binding of cytosine to MbRIP1, four water molecules were dislodged from the substrate binding site while five water molecules were dislodged when cytidine bound to MbRIP1. Seven water molecules were dislocated when cytidine diphosphate bound to MbRIP1. This showed that cytidine diphosphate occupied a larger space in the substrate binding site enhancing the buried surface area thus making it a relatively better inhibitor of MbRIP1 as compared to cytosine and cytidine. The key residues involved in the recognition of cytosine, cytidine and cytidine diphosphate were Ile71, Glu85, Tyr111 and Arg163. The orientation of cytosine in the cleft is different from that of adenine or guanine indicating a notable difference in the modes of binding of purine and pyrimidine bases. Since adenine containing nucleosides/nucleotides are suitable substrates, the cytosine containing nucleosides/nucleotides may act as inhibitors.  相似文献   

8.
The inhibitory effects of nucleotides and related substances on rat hepatic UDP-glucuronosyltransferase (UGT) were studied. ATP and NADP+ markedly reduced 4-methylumbelliferone (4-MU) UGT activity only when detergent-treated rat liver microsomes were used as the enzyme source. The IC50 values of adenine, ATP, NAD+ and NADP+ were estimated to be below 20 microM, whereas AMP had no inhibitory effect. From the kinetic behavior observed, these adenine-related compounds were assumed to inhibit UGT activity non-competitively without competing with either 4-MU or UDP-glucuronic acid. Among guanine, cytosine and their related nucleotides, only triphosphate nucleotides (CTP and GTP) exhibited potent UGT inhibition, although the effect of GTP was weak. Estradiol 3- and 17-glucuronidation were also inhibited by the inhibitors of 4-MU UGT. The only exception was that estradiol 17-glucuronidation activity was inhibited by AMP (IC50=31 microM). In addition, AMP antagonized the inhibitory effects of adenine, ATP, and NADP+ on 4-MU and estradiol 3- glucuronidation activities. These results suggest that (1) a number of cellular nucleotides present within the endoplasmic reticulum regulate UGT function; and (2) these substances bind to a common allosteric site on UGT to reduce catalytic function.  相似文献   

9.
A tlc method is presented for the separation on PEI-cellulose of adenine derivatives from the acid-soluble fraction of brain tissue. The procedure permits the quantitative estimation of radioactivity distributed among adenine nucleotides and the determination of ATP specific activity following labeling with [14C] adenosine. Two rapid one-dimensional separations produce excellent resolution of AMP, ADP, ATP, adenine, and adenosine from each other and from the corresponding guanosine derivatives. A two-dimensional procedure gives excellent separation of ATP from all other deoxy- and ribonucleotides. The recovery of the separated components by elution is better than 94% and requires few technical manipulations. The technique possesses the advantages of simplicity and sensitivity and is applicable to small amounts of biological material.  相似文献   

10.
Adenine phosphoribosyltransferase (AMP:pyrophosphate phosphoribosyltransferase EC 2.4.2.8) which catalyzes the phosphoribosylation of cytokinin bases and adenine to form the corresponding nucleotides were partially purified from the cytosol of wheat (Triticum aestivum) germ. This enzyme (molecular weight, 23,000 ± 500) phosphoribosylates the bases at an optimum Mg2+ concentration of 5 mm and optimum pH of 7.5 (50 mm Tris-HCl buffer). Km values for N6-(Δ2-isopentenyl)adenine, N6-furfuryladenine, N6-benzyladenine, and adenine are 130, 110, 154, and 74 μm, respectively, in 50 mm Tris-HCl buffer (pH 7.5) at 37 °C. Hypoxanthine and guanine are not substrates for the enzyme. In concerting with other cytokinin metabolic enzymes, this enzyme may play a significant role in maintaining the supply of adequate levels of “active cytokinin.”  相似文献   

11.
Purine deoxynucleoside salvage in Giardia lamblia   总被引:3,自引:0,他引:3  
Giardia lamblia is dependent on the salvage of preformed purines and pyrimidines, including deoxythymidine. Dependence on deoxynucleoside salvage is extremely unusual among eucaryotic cells (Moore, E. C., and Hurlbert, R. B. (1985) Pharmacol & Ther. 27, 167-196). The present study investigates the possibility that giardia lacks ribonucleotide reductase and depends entirely on deoxynucleoside salvage. A ribonucleotide reductase inhibitor, hydroxyurea, at concentrations up to 2 mM had no effect on the growth of giardia. This is 15-20 times the ED50 of hydroxyurea for the protozoans Trypanosoma cruzi, Trypanosoma gambiense, and Leishmania donovani. A lysate of giardia had no detectable ribonucleotide reductase. Although radiolabeled adenine, adenosine, guanine, and guanosine were readily incorporated into RNA by cultured cells, no adenine or adenosine and only trace amounts of guanine and guanosine were detectable in DNA. This is in contrast to deoxynucleosides, where 58% of deoxyadenosine and 10% of deoxyguanosine incorporated into nucleic acid were found in DNA. Phosphorylation of both deoxyadenosine and deoxyguanosine was catalyzed by a cell lysate of giardia when nucleoside kinase co-substrates were included in the assay but not when phosphotransferase co-substrates were present. The absence of detectable ribonucleotide reductase, the failure to incorporate purine nucleobases and nucleosides into DNA to any significant extent, the ready incorporation of deoxynucleosides into DNA, and the demonstration of a purine deoxynucleoside kinase suggest that giardia are dependent on the salvage of exogenous deoxynucleosides.  相似文献   

12.
Derepression of the synthesis of inosine 5′-monophosphate (IMP) dehydrogenase and of xanthosine 5′-monophosphate (XMP) aminase in pur mutants of Escherichia coli which are blocked in the biosynthesis of adenine nucleotides and guanine nucleotides differs in two ways from derepression in pur mutants blocked exclusively in the biosynthesis of guanine nucleotides. (i) The maximal derepression is lower, and (ii) a sharp decrease in the specific activities of AMP dehydrogenase and XMP aminase occurs, following maximal derepression. From the in vivo and in vitro experiments described, it is shown that the lack of adenine nucleotides in derepressed pur mutants blocked in the biosynthesis of adenine and guanine nucleotides is responsible for these two phenomena. The adenine nucleotides are shown to play an important regulatory role in the biosynthesis of guanosine 5′-monophosphate (GMP). (i) They induce the syntheses of IMP dehydrogenase and XMP aminase. (The mechanism of induction may involve the expression of the gua operon.) (ii) They appear to have an activating function in IMP dehydrogenase and XMP aminase activity. The physiological importance of these regulatory characteristics of adenine nucleotides in the biosynthesis of GMP is discussed.  相似文献   

13.
Enzymes of Purine Metabolism in Mycoplasma mycoides subsp. mycoides   总被引:8,自引:8,他引:0       下载免费PDF全文
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides were proposed previously from studies of its usage of radioactive purines and pyrimidines. To interpret more fully the pattern of purine usage, we have assayed cell-free extracts of this organism for several enzymes associated with the salvage synthesis of purine nucleotides. M. mycoides possessed phosphoribosyltransferases for adenine, guanine, and hypoxanthine, purine nucleoside phosphorylase, GMP reductase, GMP kinase, adenylosuccinate synthetase, and adenylosuccinate lyase. Purine nucleoside kinase and adenosine deaminase were not detected. Examination of kinetic properties and regulation of some of the above enzymes revealed differences between M. mycoides and Escherichia coli. Most notable of these were the greater susceptibility of the enzymes from M. mycoides to inhibition by nucleotides and the more widespread involvement of GMP as an inhibitor. Observations on enzyme activities in vitro allow an adequate explanation of the capacity of guanine to provide M. mycoides with its full requirement for purine nucleotides.  相似文献   

14.
Pyrimidine metabolism by intracellular Chlamydia psittaci.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pyrimidine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined mutations affecting pyrimidine metabolism. C. psittaci AA Mp cannot synthesize pyrimidines de novo, as assessed by its inability to incorporate aspartic acid into nucleic acid pyrimidines. In addition, the parasite cannot take UTP, CTP, or dCTP from the host cell, nor can it salvage exogenously supplied uridine, cytidine, or deoxycytidine. The primary source of pyrimidine nucleotides is via the salvage of uracil by a uracil phosphoribosyltransferase. Uracil phosphoribosyltransferase activity was detected in crude extracts prepared from highly purified C. psittaci AA Mp reticulate bodies. The presence of CTP synthetase and ribonucleotide reductase is implicated from the incorporation of uracil into nucleic acid cytosine and deoxycytidine. Deoxyuridine was used by the parasite only after cleavage to uracil. C. psittaci AA Mp grew poorly in mutant host cell lines auxotrophic for thymidine. Furthermore, the parasite could not synthesize thymidine nucleotides de novo. C. psittaci AA Mp could take TTP directly from the host cell. In addition, the parasite could incorporate exogenous thymidine and thymine into DNA. Thymidine kinase activity and thymidine-cleaving activity were detected in C. psittaci AA Mp reticulate body extract. Thus, thymidine salvage was totally independent of other pyrimidine salvage.  相似文献   

15.
Ribonucleotide reductase activity is required for generating deoxyribonucleotides for DNA replication. Schizosaccharomyces pombe cells lacking ribonucleotide reductase activity arrest during S phase of the cell cycle. In a screen for hydroxyurea-sensitive mutants in S. pombe, we have identified a gene, liz1+, which when mutated reveals an additional, previously undescribed role for ribonucleotide reductase activity during mitosis. Inactivation of ribonucleotide reductase, by either hydroxyurea or a cdc22-M45 mutation, causes liz1 cells in G2 to undergo an aberrant mitosis, resulting in chromosome missegregation and late mitotic arrest. liz1+ encodes a 514-amino acid protein with strong similarity to a family of transmembrane transporters, and localizes to the plasma membrane of the cell. These results reveal an unexpected G2/M function of ribonucleotide reductase and establish that defects in a transmembrane protein can affect cell cycle progression.  相似文献   

16.
GMP reductase (EC 1.6.6.8) is the only known metabolic step by which guanine nucleotides can be converted to the pivotal precursor of both adenine and guanine nucleotides. Human GMP reductase has been previously partially purified from erythrocytes and a chromosome 6-linked cDNA has been identified to correspond for encoding human GMP reductase. Here, we reported a distinct cDNA for human GMP reductase isoenzyme isolated from a human fetal brain library, and the GenBank accession number is AF419346. The deduced protein shows 90% identity with human GMP reductase reported (named GMPR1 compared with GMPR2 of this paper) and 69% with E. coli GMP reductase. Comparison of GMPR2 cDNA sequence with human genome indicates the corresponding gene spans about 6.6kb on chromosome 14, which encodes 348 amino acid residues. Northern hybridization analysis indicates a differential and disproportionate expression of mRNAs for GMPR1 and GMPR2, suggesting the existence of distinct molecular species of GMP reductase in human. The apparent Km of GMPR2 for NADPH and GMP are 26.6 and 17.4 microM, respectively. This is the first report suggesting the existence of two distinct types of human GMP reductase molecular species, which can be used to explain the bimodal saturation curve noted with the purified human erythrocyte GMP reductase.  相似文献   

17.
Substrate converting enzymes interfering with the measurement of ribonucleotide reductase were assessed in cell-free extracts prepared from L1210 cells. Data show the presence of a myokinase-type enzyme activity (CTP:CMP phosphotransferase) which catalyzes the reaction: 2CDP in equilibrium CMP + CTP. This enzyme is not removed by passage of cell extracts over ATP-agarose columns. Monitoring of nucleoside diphosphate substrate level is, therefore, mandatory for obtaining accurate measurements of CDP reductase activity in crude cell extracts.  相似文献   

18.
R G Hards  J A Wright 《Enzyme》1983,29(4):223-228
There is an iron-dependent activity in the venom of Crotalus atrox which appears to hydrolyze the N-glycosidic sugar-base bond of pyrimidine and purine nucleotides. Maximal activation of this activity occurred at 1.0 mmol/l and 0.8 mmol/l FeCl3 for cytidine diphosphate (CDP) and ADP substrates, respectively. The release of free base affects the background values of control experiments carried out during nucleotide-labelled assays of ribonucleotide reductase which require the conversion of nucleotides to nucleosides by snake venom treatment. When the reductase is examined in intact cells, a situation closely resembling normal physiological conditions for the enzyme, FeCl3 was found to be an inhibitor of ADP reductions and varied from a mild stimulator to a significant inhibitor of CDP reductions depending upon FeCl3 concentration. Possible explanations for previously observed variability in ribonucleotide reductase activity in the presence of iron are suggested.  相似文献   

19.
Toxoplasma gondii, growing exponentially in heavily infected mutant Chinese hamster ovary cells that had a defined defect in purine biosynthesis, did not incorporate [U-14C]glucose or [14C]formate into the guanine or adenine of nucleic acids. Intracellular parasites therefore must be incapable of synthesizing purines and depend on their host cells for them. Extracellular parasites, which are capable of limited DNA and RNA synthesis, efficiently incorporated adenosine nucleotides, adenosine, inosine, and hypoxanthine into their nucleic acids; adenosine 5′-monophosphate was the best utilized precursor. Extracellular parasites incubated with ATP labeled with 3H in the purine base and 32P in the α-phosphate incorporated the purine ring 50-fold more efficiently than they did the α-phosphate. Thus, ATP is largely degraded to adenosine before it can be used by T. gondii for nucleic acid synthesis. Two pathways for the conversion of adenosine to nucleotides appear to exist, one involving adenosine kinase, the other hypoxanthine—guanine phosphoribosyl transferase. In adenosine kinase-less mutant parasites, the efficiency of incorporation of ATP or adenosine was reduced by 75%, which indicates the adenosine kinase pathway was predominant. Extracellular parasites incorporated ATP into both the adenine and the guanine of their nucleic acids, so ATP from the host cell could supply the entire purine requirement of T. gondii. However, ATP generated by oxidative phosphorylation in the host cell is not essential for parasites because they grew normally in a cell mutant that was deficient in aerobic respiration and almost completely dependent upon glycolysis.  相似文献   

20.
Five enzymes concerned with the metabolism of adenine derivatives were assayed in seven regions of the rat brain. A region which included the hypothalamus had the highest AMP deaminase and adenosine deaminase activities, while its 5'-nucleotidase activities were relatively low. The enzymes named and also the uptake of [14C]adenine by incubated tissue samples were more active with hypothalamic than with neocortical tissues. On superfusion with glucose-bicarbonate saline after assimilating [14C]adenine, the hypothalamic tissues released about 0.2% of their 14C content per minute. This release was increased fourfold with electrical excitation but the presence of 0.25 μUM tetrodotoxin prevented most of this increase. The compounds released during superfusion and electrical stimulation were preponderantly hypoxanthine, inosine, and adenosine, with only small amounts of adenine nucleotides. The output of all these compounds increased during the period of stimulation and also the proportion of adenine nucleotides increased when stimulation was carried out in the presence of tetrodotoxin. The output of the nucleotides and adenosine increased more promptly when stimulated than did that of the other compounds named. The results are discussed in terms of the metabolic roles of the enzymes concerned, and in relation to whether the enzymes are acting on intracellular or extracellular substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号