首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs) synthesis, reduces neointimal formation in animal models of vascular injury and recently has been shown to inhibit in-stent late loss in a placebo-controlled phase II clinical trial. However, the mechanisms underlying the efficacy of bindarit in controlling neointimal formation/restenosis have not been fully elucidated. Therefore, we investigated the effect of bindarit on human coronary smooth muscle cells activation, drawing attention to the phenotypic modulation process, focusing on contractile proteins expression as well as proliferation and migration. The expression of contractile proteins was evaluated by western blot analysis on cultured human coronary smooth muscle cells stimulated with TNF-α (30 ng/mL) or fetal bovine serum (5%). Bindarit (100–300 µM) reduced the embryonic form of smooth muscle myosin heavy chain while increased smooth muscle α-actin and calponin in both TNF-α- and fetal bovine serum-stimulated cells. These effects were associated with the inhibition of human coronary smooth muscle cell proliferation/migration and both MCP-1 and MCP-3 production. The effect of bindarit on smooth muscle cells phenotypic switching was confirmed in vivo in the rat balloon angioplasty model. Bindarit (200 mg/Kg/day) significantly reduced the expression of the embryonic form of smooth muscle myosin heavy chain, and increased smooth muscle α-actin and calponin in the rat carodid arteries subjected to endothelial denudation. Our results demonstrate that bindarit induces the differentiated state of human coronary smooth muscle cells, suggesting a novel underlying mechanisms by which this drug inhibits neointimal formation.  相似文献   

2.
3.
A growing body of evidence supports that the epithelial-to-mesenchymal transition (EMT), which occurs during cancer development and progression, has a crucial role in metastasis by enhancing the motility of tumor cells. Transforming growth factor-β (TGF-β) is known to induce EMT in a number of cancer cell types; however, the mechanism underlying this transition process is not fully understood. In this study we have demonstrated that TGF-β upregulates the expression of tumor suppressor protein Par-4 (prostate apoptosis response-4) concomitant with the induction of EMT. Mechanistic investigations revealed that exogenous treatment with each TGF-β isoform upregulates Par-4 mRNA and protein levels in parallel levels of phosphorylated Smad2 and IκB-α increase. Disruption of TGF-β signaling by using ALK5 inhibitor, neutralizing TGF-β antibody or phosphoinositide 3-kinase inhibitor reduces endogenous Par-4 levels, suggesting that both Smad and NF-κB pathways are involved in TGF-β-mediated Par-4 upregulation. NF-κB-binding sites in Par-4 promoter have previously been reported; however, using chromatin immunoprecipitation assay we showed that Par-4 promoter region also contains Smad4-binding site. Furthermore, TGF-β promotes nuclear localization of Par-4. Prolonged TGF-β3 treatment disrupts epithelial cell morphology, promotes cell motility and induces upregulation of Snail, vimentin, zinc-finger E-box binding homeobox 1 and N-Cadherin and downregulation of Claudin-1 and E-Cadherin. Forced expression of Par-4, results in the upregulation of vimentin and Snail expression together with increase in cell migration. In contrast, small interfering RNA-mediated silencing of Par-4 expression results in decrease of vimentin and Snail expression and prevents TGF-β-induced EMT. We have also uncovered a role of X-linked inhibitor of apoptosis protein in the regulation of endogenous Par-4 levels through inhibition of caspase-mediated cleavage. In conclusion, our findings suggest that Par-4 is a novel and essential downstream target of TGF-β signaling and acts as an important factor during TGF-β-induced EMT.  相似文献   

4.
Members of the transforming growth factor beta (TGF-β) superfamily are multifunctional cytokines that regulate several cellular processes, including cell cycle arrest, differentiation, morphogenesis, and apoptosis. TGF-β promotes extracellular matrix production and morphological change. Morphogenetic responses to TGF-β include cell migration and epithelial–mesenchymal transition (EMT), which are critical during embryogenesis, development of fibrotic diseases, and the spreading of advanced carcinomas. The purpose of this study was to clarify how TGF-β regulates the fate of retinal pigment epithelial (RPE) cells. TGF-β1 promoted cell cycle progression and phosphorylation of retinoblastoma protein (Rb) in ARPE-19 cells. TGF-β1 induced survivin expression, which in turn stabilized tubulin and Aurora B. RT-PCR and western blot analysis revealed that survivin expression increased in ARPE-19 cells following TGF-β1 treatment. When survivin was depleted, TGF-β1 induced cell cycle arrest and apoptosis and also reduced Rb phosphorylation. In conclusion, the present study shows that induction of EMT in human RPE cells upregulates survivin, leading to survivin-dependent inhibition of cell cycle arrest and apoptosis. Whether cells undergo EMT or apoptosis in response to TGF-β1 is dependent on their cell cycle state, and TGF-β1 regulates the cell cycle via survivin.  相似文献   

5.

Background

Atherosclerosis is a complex pathological condition caused by a number of mechanisms including the accelerated proliferation of vascular smooth muscle cells (VSMCs). Diabetes is likely to be an important risk factor for atherosclerosis, as hyperglycemia induces vascular smooth muscle cell (VSMC) proliferation and migration and may thus contribute to the formation of atherosclerotic lesions. This study was performed to investigate whether PGC-1α, a PPARγ coactivator and metabolic master regulator, plays a role in regulating VSMC proliferation and migration induced by high glucose.

Methodology/Principal Findings

PGC-1α mRNA levels are decreased in blood vessel media of STZ-treated diabetic rats. In cultured rat VSMCs, high glucose dose-dependently inhibits PGC-1α mRNA expression. Overexpression of PGC-1α either by infection with adenovirus, or by stimulation with palmitic acid, significantly reduces high glucose-induced VSMC proliferation and migration. In contrast, suppression of PGC-1α by siRNA mimics the effects of glucose on VSMCs. Finally, mechanistic studies suggest that PGC-1α-mediated inhibition of VSMC proliferation and migration is regulated through preventing ERK1/2 phosphorylation.

Conclusions/Significance

These results indicate that PGC-1α is a key regulator of high glucose-induced proliferation and migration in VSMCs, and suggest that elevation of PGC-1α in VSMC could be a useful strategy in preventing the development of diabetic atherosclerosis.  相似文献   

6.
7.
Transforming growth factor-β (TGF-β) triggers apoptosis in endothelial cells, while the mechanisms underlying this action are not entirely understood. Using genetic and pharmacological tools, we demonstrated that TGF-β induced a moderate apoptotic response in human cultured endothelial cells, which was dependent upon upregulation of the Nox4 NADPH oxidase and production of reactive oxygen species (ROS). In contrast, we showed that ectopic expression of Nox4 via viral vectors (vNox4) produced an antiapoptotic effect. TGF-β caused ROS-dependent p38 activation, whereas inhibition of p38 blunted TGF-β-induced apoptosis. However, vNox4, but not TGF-β, activated Akt, and inhibition of Akt attenuated the antiapoptotic effect of vNox4. Akt activation induced by vNox4 was accompanied by inactivation of the protein tyrosine phosphatase-1B (PTP1B) function and enhanced vascular endothelial growth factor receptor (VEGFR)-2 phosphorylation. Moreover, we showed that TGF-β enhanced Notch signaling and increased expression of the arterial marker EphrinB2 in a redox-dependent manner. In summary, our results suggest that Nox4 and ROS have pivotal roles in mediating TGF-β-induced endothelial apoptosis and phenotype specification. Redox mechanisms may influence endothelial cell functions by modulating p38, PTP1B/VEGFR/Akt and Notch signaling pathways.  相似文献   

8.
9.
Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaption-associated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenindependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway.  相似文献   

10.

Background

Diabetes exacerbates abnormal vascular smooth muscle cell (VSMC) accumulation in response to arterial wall injury. Vinpocetine has been shown to improve vascular remolding; however, little is known about the direct effects of vinpocetine on vascular complications mediated by diabetes. The objective of this study was to determine the effects of vinpocetine on hyperglycemia-facilitated neointimal hyperplasia and explore its possible mechanism.

Materials and Methods

Nondiabetic and diabetic rats were subjected to balloon injury of the carotid artery followed by 3-week treatment with either vinpocetine (10 mg/kg/day) or saline. Morphological analysis and proliferating cell nuclear antigen (PCNA) immunostaining were performed on day 21. Rat VSMCs proliferation was determined with 5-ethynyl-20-deoxyuridine cell proliferation assays. Chemokinesis was monitored with scratch assays, and production of reactive oxygen species (ROS) was assessed using a 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) flow cytometric assay. Apoptosis was detected by annexin V-FITC/PI flow cytometric assay. Cell signaling was assessed by immunblotting.

Results

Vinpocetine prevented intimal hyperplasia in carotid arteries in both normal (I/M ratio: 93.83 ± 26.45% versus 143.2 ± 38.18%, P<0.05) and diabetic animals (I/M ratio: 120.5 ± 42.55% versus 233.46 ± 33.98%, P<0.05) when compared to saline. The in vitro study demonstrated that vinpocetine significantly inhibited VSMCs proliferation and chemokinesis as well as ROS generation and apoptotic resistance, which was induced by high glucose (HG) treatment. Vinpocetine significantly abolished HG-induced phosphorylation of Akt and JNK1/2 without affecting their total levels. For downstream targets, HG-induced phosphorylation of IκBα was significantly inhibited by vinpocetine. Vinpocetine also attenuated HG-enhanced expression of PCNA, cyclin D1 and Bcl-2.

Conclusions

Vinpocetine attenuated neointimal formation in diabetic rats and inhibited HG-induced VSMCs proliferation, chemokinesis and apoptotic resistance by preventing ROS activation and affecting MAPK, PI3K/Akt, and NF-κB signaling.  相似文献   

11.

Background

The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases.

Methods

Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance.

Results

We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction.

Conclusion

Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma.  相似文献   

12.
13.
14.
Overexpression of transforming growth factor β1 (TGF-β1) has been linked to immune suppression, tumor angiogenesis, tumor cell migration, tumor cell survival, and tumor cell invasion in many cancers. In the present study, we found abundant expression of TGF-β1 in the microenvironment of four different pathological types of meningioma tumors. TGF-β1 induced invasion in malignant meningioma cells with an associated upregulation of urokinase-type plasminogen activator (uPA), uPAR, cathepsin B, and MMP-9, and this increase in proliferation was coupled with the expression of anti-apoptotic and pro-survival signaling molecules. In addition to the intense immunoreactivity of meningioma tumors to X-linked inhibitor to apoptosis (XIAP), its knockdown abolished the TGF-β1-induced proliferation of these cells. The stimulation of XIAP expression and the activation of pSMAD-2 is mediated by phosphatidylinositol 3-kinase (PI3K)- and MEK-dependent pathways, and the addition of anti-TGF-β1 antibodies prevented their expression with a consequent decrease in invasion. Bicistronic shRNA constructs targeting uPAR and cathepsin B (pUC) quenched TGF-β1-driven invasion and survival of meningioma cells by downregulation of XIAP and pSMAD-2 expression. Animal models with intracranial tumors showed elevated levels of TGF-β1, XIAP and pSMAD-2, and pUC treatment prevented this increased expression. Thus, targeted silencing of TGF-β1-induced signaling by pUC in meningioma would provide new treatment approaches for management of meningioma.  相似文献   

15.

Aims

Oxidative stress and apoptosis are among the earliest lesions of diabetic retinopathy. This study sought to examine the anti-oxidative and anti-apoptotic effects of α-melanocyte-stimulating hormone (α-MSH) in early diabetic retinas and to explore the underlying mechanisms in retinal vascular endothelial cells.

Methods

Sprague-Dawley rats were injected intravenously with streptozocin to induce diabetes. The diabetic rats were injected intravitreally with α-MSH or saline. At week 5 after diabetes, the retinas were analyzed for reactive oxygen species (ROS) and gene expression. One week later, the retinas were processed for terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and transmission electron microscopy. Retinal vascular endothelial cells were stimulated by high glucose (HG) with or without α-MSH. The expression of Forkhead box O genes (Foxos) was examined through real-time PCR. The Foxo4 gene was overexpressed in endothelial cells by transient transfection prior to α-MSH or HG treatment, and oxidative stress and apoptosis were analyzed through CM-H2DCFDA and annexin-V assays, respectively.

Results

In diabetic retinas, the levels of H2O2 and ROS and the total anti-oxidant capacity were normalized, the apoptotic cell number was reduced, and the ultrastructural injuries were ameliorated by α-MSH. Treatment with α-MSH also corrected the aberrant changes in eNOS, iNOS, ICAM-1, and TNF-α expression levels in diabetic retinas. Furthermore, α-MSH inhibited Foxo4 up-regulation in diabetic retinas and in endothelial cells exposed to HG, whereas Foxo4 overexpression abrogated the anti-oxidative and anti-apoptotic effects of α-MSH in HG-stimulated retinal vascular endothelial cells.

Conclusions

α-MSH normalized oxidative stress, reduced apoptosis and ultrastructural injuries, and corrected gene expression levels in early diabetic retinas. The protective effects of α-MSH in retinal vascular endothelial cells may be mediated through the inhibition of Foxo4 up-regulation induced by HG. This study suggests an α-MSH-mediated potential intervention approach to early diabetic retinopathy and a novel regulatory mechanism involving Foxo4.  相似文献   

16.
Metastasis is the leading cause of death by cancer. Non-small-cell lung cancer (NSCLC) represents nearly 85% of primary malignant lung tumours. Recent researches have demonstrated that epithelial-to-mesenchymal transition (EMT) plays a key role in the early process of metastasis of cancer cells. Transforming growth factor-β1 (TGF-β1) is the major inductor of EMT. The aim of this study is to investigate TGF-β1''s effect on cancer stem cells (CSCs) identified as cells positive for CD133, side population (SP) and non-cancer stem cells (non-CSCs) identified as cells negative for CD133, and SP in the A549 cell line. We demonstrate that TGF-β1 induces EMT in both CSC and non-CSC A549 sublines, upregulating the expression of mesenchymal markers such as vimentin and Slug, and downregulating levels of epithelial markers such as e-cadherin and cytokeratins. CSC and non-CSC A549 sublines undergoing EMT show a strong migration and strong levels of MMP9 except for the CD133 cell fraction. OCT4 levels are strongly upregulated in all cell fractions except CD133 cells. On the contrary, wound size reveals that TGF-β1 enhances motility in wild-type A549 as well as CD133+ and SP+ cells. For CD133 and SP cells, TGF-β1 exposure does not change the motility. Finally, assessment of growth kinetics reveals major colony-forming efficiency in CD133+ A549 cells. In particular, SP+ and SP A549 cells show more efficiency to form colonies than untreated corresponding cells, while for CD133 cells no change in colony number was observable after TGF-β1 exposure. We conclude that it is possible to highlight different cell subpopulations with different grades of stemness. Each population seems to be involved in different biological mechanisms such as stemness maintenance, tumorigenicity, invasion and migration.  相似文献   

17.

Background/Aim

Neointimal formation after vessel injury is a complex process involving multiple cellular and molecular processes. Inhibition of intimal hyperplasia plays an important role in preventing proliferative vascular diseases, such as restenosis. In this study, we intended to identify whether sodium ferulate could inhibit neointimal formation and further explore potential mechanisms involved.

Methods

Cultured vascular smooth muscle cells (VSMCs) isolated from rat thoracic aorta were pre-treated with 200 µmol/L sodium ferulate for 1 hour and then stimulated with 1 µmol/L angiotensin II (Ang II) for 1 hour or 10% serum for 48 hours. Male Sprague-Dawley rats subjected to balloon catheter insertion were administrated with 200 mg/kg sodium ferulate (or saline) for 7 days before sacrificed.

Results

In presence of sodium ferulate, VSMCs exhibited decreased proliferation and migration, suppressed intracellular reactive oxidative species production and NADPH oxidase activity, increased SOD activation and down-regulated p38 phosphorylation compared to Ang II-stimulated alone. Meanwhile, VSMCs treated with sodium ferulate showed significantly increased protein expression of smooth muscle α-actin and smooth muscle myosin heavy chain protein. The components of Notch pathway, including nuclear Notch-1 protein, Jagged-1, Hey-1 and Hey-2 mRNA, as well as total β-catenin protein and Cyclin D1 mRNA of Wnt signaling, were all significantly decreased by sodium ferulate in cells under serum stimulation. The levels of serum 8-iso-PGF2α and arterial collagen formation in vessel wall were decreased, while the expression of contractile markers was increased in sodium ferulate treated rats. A decline of neointimal area, as well as lower ratio of intimal to medial area was observed in sodium ferulate group.

Conclusion

Sodium ferulate attenuated neointimal hyperplasia through suppressing oxidative stress and phenotypic switching of VSMCs.  相似文献   

18.
19.

Objectives

The RhoA/ROCK pathway contributes to diabetic cardiomyopathy in part by promoting the sustained activation of PKCβ2 but the details of their interaction are unclear. The purpose of this study was to investigate if over-activation of ROCK in the diabetic heart leads to direct phosphorylation and activation of PKCβ2, and to determine if their interaction affects PDK-1/Akt signaling.

Methods

Regulation by ROCK of PKCβ2 and related kinases was investigated by Western blotting and co-immunoprecipitation in whole hearts and isolated cardiomyocytes from 12 to 14-week diabetic rats. Direct ROCK2 phosphorylation of PKCβ2 was examined in vitro. siRNA silencing was used to confirm role of ROCK2 in PKCβ2 phosphorylation in vascular smooth muscle cells cultured in high glucose. Furthermore, the effect of ROCK inhibition on GLUT4 translocation was determined in isolated cardiomyocytes by confocal microscopy.

Results

Expression of ROCK2 and expression and phosphorylation of PKCβ2 were increased in diabetic hearts. A physical interaction between the two kinases was demonstrated by reciprocal immunoprecipitation, while ROCK2 directly phosphorylated PKCβ2 at T641 in vitro. ROCK2 siRNA in vascular smooth muscle cells or inhibition of ROCK in diabetic hearts reduced PKCβ2 T641 phosphorylation, and this was associated with attenuation of PKCβ2 activity. PKCβ2 also formed a complex with PDK-1 and its target AKT, and ROCK inhibition resulted in upregulation of the phosphorylation of PDK-1 and AKT, and increased translocation of glucose transporter 4 (GLUT4) to the plasma membrane in diabetic hearts.

Conclusion

This study demonstrates that over-activation of ROCK2 contributes to diabetic cardiomyopathy by multiple mechanisms, including direct phosphorylation and activation of PKCβ2 and interference with the PDK-1-mediated phosphorylation and activation of AKT and translocation of GLUT4. This suggests that ROCK2 is a critical node in the development of diabetic cardiomyopathy and may be an effective target to improve cardiac function in diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号