首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The respiratory responses of substrate-depleted excised roottips to a range of sugars, sugar phosphates, and sugar alcoholshave been determined by measuring oxygen uptake by the directmethod of Warburg. Sucrose, dextrose, and laevulose are the only sugars which promotea high level of oxygen uptake. The effects of azide and DNP on the oxygen uptake promoted bysucrose and by dextrose are described. Mannose is a strong inhibitor of respiration. This inhibitionis reversed by the simultaneous addition of those sugars whichalso reverse the growth inhibition caused by mannose. Mannoseinhibits the respiration of sucrose and of glycolytic intermediates.Galactose is slowly respired and does not, even at high concentration,inhibit the respiration of sucrose. The results are discussed in relation to the growth effectsof the sugars tested.  相似文献   

2.
蔗糖调节拟南芥花青素的生物合成   总被引:1,自引:0,他引:1  
为了探讨糖在花青素合成过程中的调节作用,采用蔗糖和其代谢糖(葡萄糖 和果糖)组合处理拟南芥幼苗.实验结果表明,60 mmol/L蔗糖处理显著提高拟南芥 幼苗的花青素、还原糖含量,并上调花青素合成相关基因(CHS, FLS-1, DFR, LDOX, BANYULS)的转录,对叶绿素含量和UGT78D2基因的转录无影响;20 mmol/L 葡萄糖+20 mmol/L果糖处理,对花青素、叶绿素和还原糖的含量无影响,对花青素 合成相关基因转录影响不一;20 mmol/L蔗糖+20 mmol/L葡萄糖+20 mmol/L果糖处 理后,花青素和还原糖含量介于前两个处理之间,也上调花青素合成相关基因的转 录;但和蔗糖处理组相比,上调UGT78D2基因转录,下调FLS-1基因转录.在不同处 理组之间,花青素含量变化和还原糖含量变化趋势相同,有可能糖在调节花青素 合成的同时也调节还原糖含量.因此,蔗糖既可以通过蔗糖特异信号途径,也可以 和其代谢糖通过其他途径共同调节拟南芥花青素的生物合成.  相似文献   

3.
The regulation of sugar uptake and accumulation in bean pod tissue   总被引:15,自引:12,他引:3       下载免费PDF全文
Sacher JA 《Plant physiology》1966,41(1):181-189
The identity, localization and physiological significance of enzymes involved in sugar uptake and accumulation were determined for endocarp tissue of pods of Kentucky Wonder pole beans (Phaseolus vulgaris). An intracellular, alkaline invertase (pH optimum, 8) was assayed in extracted protein, as well as enzymes involved in sucrose synthesis, namely, uridinediphosphate (UDP-glucose pyrophosphorylase and UDP-glucose-fructose transglucosylase). Indirect evidence indicated the presence also of hexokinase, phosphohexoseisomerase and phosphoglucomutase. The data suggested that sucrose synthesis occurred in the cytoplasm, and that both sugar storage and an alkaline invertase occurred in the vacuole. The latter functions to hydrolyze accumulated sucrose. An outer space invertase (pH optimum, 4.0) was detected, but was variable in occurrence. Although its activity at the cell surface enhanced sucrose uptake, sucrose may be taken up unaltered.

Over a wide range of concentrations of exogenous glucose the sucrose/reducing sugar ratio of accumulated sugars remained unchanged at about 20. Synthesis of sucrose appears to be requisite to initial accumulation from glucose or fructose, as free hexoses do not increase at the apparent saturating concentration for uptake. Sucrose accumulation from exogenous hexose represents a steady-state value, in which sucrose is transported across the tonoplast into the vacuole at a rate equivalent to its rate of synthesis. Evidence indicates that this component of the accumulation process involves active transport of sucrose against a concentration gradient. The ratio of sucrose/reducing sugars in the accumulated sugars immediately after a period of uptake was inversely related to the level of inner space invertase. Within 16 hours after a period of accumulation, practically all of the sugar occurs as glucose and fructose.

The absence of competition among hexoses and sucrose indicated that a common carrier was not involved in their uptake. From a series of studies on the kinetics of uptake of glucose and fructose, including competition studies, the effects of inhibitors, radioactive assay of accumulated sugars and the distribution of label in accumulated sucrose it appeared that rate limitation for glucose or fructose uptake resides in the sequence of reactions leading to sucrose synthesis, rather than in a process mediated by a carrier protein.

  相似文献   

4.
The effects of sugars on the glucosylation of exogenous hydroquinone(HQ) was investigated by supplying individual sugars simultaneouslywith HQ to a suspension culture of Catharanthus roseus cells.The production of arbutin was enhanced as much as 2- to 3-foldby sucrose or glucose at concentrations of up to 6%, with theenhancement being directly dependent on the concentration ofthe sugar. The exogenously added sugar was not metabolized andremained unchanged. Sorbitol also promoted the production ofarbutin in a similar manner. Sucrose improved the viability of cells and, in cultures suppliedwith sucrose and HQ, the activity of UDP-glucose: hydroquinoneglucosyltransferase increased over a much longer period of timethan that in control cultures supplemented with HQ only. (Received December 11, 1989; Accepted March 26, 1990)  相似文献   

5.
The changes in sugars (water-soluble carbohydrates) were studied in the developing grain of rice (Oryza sativa L., variety IR28 and IR29) in relation to the role of these sugars as precursors of ADP glucose in starch accumulation. The levels of total sugars, total reducing sugars and free glucose, sucrose and other nonreducing sugars, maltooligosaccharides, and total and nonsucrosyl fructose followed closely the changes in the rate of starch accumulation, in both IR28 and 29; the peak value occurred 9 days after flowering. The level of soluble carbohydrates remained high in the caryopsis and also in milled rice after starch accumulation, suggesting that the supply of sugar precursors does not limit starch accumulation in the rice grain. Because of a higher level of reducing sugars, the level of free sugars in the grain of waxy rice IR29 was higher than that of nonwaxy IR28.  相似文献   

6.
The induction of anthocyanin synthesis and anthocyanin biosynthetic gene expression in detached petunia (Petunia hybrida) corollas by gibberellic acid (GA3) requires sucrose. Neither sucrose nor GA3 alone can induce these processes. We found that GA3 enhances sucrose uptake by 20 to 30%, and we tested whether this is the mechanism by which the hormone induces gene expression. Changing the intracellular level of sucrose with the inhibitors p-chloromercuribenzenesulfonic acid and vanadate did not inhibit the induction of chalcone synthase gene (chs) expression by GA3. Growing detached corollas in various sucrose concentrations did not affect the induction of the gene but did affect its level of expression and the level of anthocyanin accumulated. Only metabolic sugars promoted GA3-induced anthocyanin accumulation. Mannitol and sorbitol had no effect and 3-O-methylglucose only slightly promoted chs expression and anthocyanin accumulation. Our results do not support the suggestion that sugars act as specific signals in the activation of anthocyanin biosynthetic gene expression during petunia corolla development. We suggest that sugars are essential as general sources of carbohydrates for carbon metabolism, upon which the induction of pigmentation is dependent.  相似文献   

7.
Sugar is essential for the development of detached Petunia hybrida flowers. We have shown that sucrose (Suc) and gibberellic acid (GA3) are required for anthocyanin accumulation and the expression of various genes in developing petunia corollas. The effect of GA3 on the expression of the gibberellin-induced gene and chalcone synthase gene, in detached corollas, was promoted by metabolic sugars such as Suc, glucose (Glc) and fructose, but not by the nonmetabolized 3- O -methylglucose and the sugar alcohol, mannitol. Several pieces of evidence support sugars' signaling role in the corollas and the possible involvement of hexokinase as the sugar sensor. Mannose, which is inefficiently metabolized but is phosphorylated by hexokinase at efficiency similar to Glc, was as effective as Glc in promoting gene expression and pigmentation. 2-Deoxyglucose, which is a substrate for hexokinase but is not metabolized in glycolysis, also promoted gene expression. On the other hand, mannoheptulose, a competitive inhibitor of hexokinase, completely abolished the promotive effect of Glc. We suggest that sugar-phosphorylation-related signal transduction interacts with the gibberellin signal to induce gene expression and anthocyanin accumulation in developing petunia corollas.  相似文献   

8.
Short-term transport studies were conducted using excised whole Zea mays kernels incubated in buffered solutions containing radiolabeled sugars. Following incubation, endosperms were removed and rates of net 14C-sugar uptake were determined. Endogenous sugar gradients of the kernel were estimated by measuring sugar concentrations in cell sap collected from the pedicel and endosperm. A sugar concentration gradient from the pedicel to the endosperm was found. Uptake rates of 14C-labeled glucose, fructose, and sucrose were linear over the concentration range of 2 to 200 millimolar. At sugar concentrations greater than 50 millimolar, hexose uptake exceeded sucrose uptake. Metabolic inhibitor studies using carbonylcyanide-m-chlorophenylhydrazone, sodium cyanide, and dinitrophenol and estimates of Q10 suggest that the transport of sugars into the developing maize endosperm is a passive process. Sucrose was hydrolyzed to glucose and fructose during uptake and in the endosperm was either reconverted to sucrose or incorporated into insoluble matter. These data suggest that the conversion of sucrose to glucose and fructose may play a role in sugar absorption by endosperm. Our data do not indicate that sugars are absorbed actively. Sugar uptake by the endosperm may be regulated by the capacity for sugar utilization (i.e. starch synthesis).  相似文献   

9.
The use of sugarcane as a biofactory and source of renewable biomass is being investigated increasingly due to its vigorous growth and ability to fix a large amount of carbon dioxide compared to other crops. The high biomass resulting from sugarcane production (up to 80 t/ha) makes it a candidate for genetic manipulation to increase the production of other sugars found in this research that are of commercial interest. Sucrose is the major sugar measured in sugarcane with hexoses glucose and fructose present in lower concentrations; sucrose can make up to 60% of the total dry weight of the culm. Species related to modern sugarcane cultivars were examined for the presence of sugars other than glucose, fructose and sucrose with the potential of this crop as a biofactory in mind. The species examined form part of the Saccharum complex, a closely-related interbreeding group. Extracts of the immature and mature internodes of six different species and a hybrid were analysed with gas chromatography mass spectrometry to identify mono-, di- and tri-saccharides, as well as sugar acids and sugar alcohols. Thirty two sugars were detected, 16 of which have previously not been identified in sugarcane. Apart from glucose, fructose and sucrose the abundance of sugars in all plants was low but the research demonstrated the presence of sugar pathways that could be manipulated. Since species from the Saccharum complex can be interbred, any genes leading to the production of sugars of interest could be introgressed into commercial Saccharum species or manipulated through genetic engineering.  相似文献   

10.
Escherichia coli can uptake and utilize many common natural sugars to form biomass or valuable target bio-products. Carbon catabolite repression (CCR) will occur and hamper the efficient production of bio-products if E. coli strains are cultivated in a mixture of sugars containing some preferred sugar, such as glucose. Understanding the transport and metabolism mechanisms of the common and inexpensive sugars in E. coli is important for further improving the efficiency of sugar bioconversion and for reducing industrial fermentation costs using the methods of metabolic engineering, synthetic biology and systems biology. In this review, the transport and mediation mechanisms of glucose, fructose, sucrose, xylose and arabinose are discussed and summarized, and the hierarchical utilization principles of these sugars are elucidated.  相似文献   

11.
14C-Sugar uptake and incorporation into starch by slices of developing maize (Zea mays L.) endosperm were examined and compared with sugar uptake by maize endosperm-derived suspension cultures. Rates of sucrose, fructose, and d- and l-glucose uptake by slices were similar, whereas uptake rates for these sugars differed greatly in suspension cultures. Concentration dependence of sucrose, fructose, and d-glucose uptake was biphasic (consisting of linear plus saturable components) with suspension cultures but linear with slices. These and other differences suggest that endosperm slices are freely permeable to sugars. After diffusion into the slices, sugars were metabolized and incorporated into starch. Starch synthesis, but not sugar accumulation, was greatly reduced by 2.5 millimolar p-chloromercuribenzenesulfonic acid and 0.1 millimolar carbonyl cyanide m-chlorophenylhydrazone. Starch synthesis was dependent on kernel age and incubation temperature, but not on external pH (5 through 8). Competing sugars generally did not affect the distribution of 14C among the soluble sugars extracted from endosperm slices incubated in 14C-sugars. Competing hexoses reduced the incorporation of 14C into starch, but competing sucrose did not, suggesting that sucrose is not a necessary intermediate in starch biosynthesis. The bidirectional permeability of endosperm slices to sugars makes the characterization of sugar transport into endosperm slices impossible, however the model system is useful for experiments dealing with starch biosynthesis which occurs in the metabolically active tissue.  相似文献   

12.
本文研究了影响紫背天葵试管苗花青甙含量的某些因子,即培养基成分,pH、糖、维生素B_2和椰乳。生长在1/2SH培养基上的苗,它的花青甙含量比在1/2MS培养基上的增加33%。对花青甙含量和苗的生长都有利的培养基pH是5.8。糖的种类对花青甙含量有明显的影响,在含果糖培养基中生长的苗,其花青甙浓度比其他糖中的高,可比蔗糖的增加52%,但培养物生长量很低,仅为蔗糖的64%。葡萄糖对紫背天葵花青甙的含量和生长都有良好的作用。上述两方面都比在蔗糖中的增加近30%;对花青甙含量的葡萄糖适宜浓度为4%。看来,糖对花青甙浓度的影响与培养物的生长速度之间有某些关系。椰乳对苗的生长和花青甙含量均有明显促进作用,分别比对照增加180%和50%。  相似文献   

13.
14.
Suspension cultures of Coleus blumei were characterized with respect to growth and rosmarinic acid formation in media with different sugars and various sugar concentrations. Sucrose is the sugar with the highest stimulating effect on growth and rosmarinic acid accumulation, followed by glucose and fructose. The sugar alcohol mannitol cannot be metabolized by the plant cells. Sucrose is cleaved into glucose and fructose by the Coleus cells. Sucrose concentrations from 1 to 5% have an increasing positive effect on growth and rosmarinic acid synthesis in the cell cultures with a maximum rosmarinic acid content of 12% of the dry weight in medium with 5% sucrose; in medium with 6% sucrose rosmarinic acid accumulation obviously did not reach its highest level in the culture period of 14 days. A very high yield of rosmarinic acid (2 mg ml-1 suspension) could also be achieved by maintaining a sucrose concentration of 2% during the whole culture period. The start of rosmarinic acid synthesis by the cell cultures seems to be regulated by the growth limitation when a nutrient, e.g. phosphate is depleted from the medium. The rate of rosmarinic acid accumulation is related to the amount of carbon left in the medium when growth ceases.Abbreviations RA rosmarinic acid  相似文献   

15.
Trehalose, an α,α-diglucoside, induced a rapid blackening and death of shoot tips of Cuscuta reflexa (dodder) cultured in vitro. The onset of toxic symptom was delayed if any of the several sugars which support the in vitro growth of Cuscuta was supplied with trehalose. The rate of trehalose uptake or its accumulation in the tissue was not affected by sugar cofeeding. The levels of total and reducing sugars declined appreciably in the trehalose-fed shoot tip explants compared to control tissue cultured in absence of a carbon source. This was not due to an increased rate of respiration of the trehalose-treated tissue. In shoot tips cultured in presence of both trehalose and sucrose, the decline in total and reducing sugars was curtailed. There was a marked fall in the level of sucrose; and invertase activity was higher in trehalose-fed shoot tips. The incorporation of label from [14C]glucose into sucrose in the shoot tip explant was reduced as early as 12 h of trehalose feeding. The results suggest that increased utilization of sucrose as well as an inhibition of its synthesis contribute to the drastic fall in the sucrose content upon trehalose feeding.  相似文献   

16.
Red beet hairy root cultures, obtained after genetic transformation with Agrobacterium rhizogenes, are completely heterotrophic and synthesize betalaines (BNs). Upon subjecting the hairy roots to treatments containing different sugars (3% w/v) it was found that sucrose was rapidly utilized, followed by maltose, and a very limited use of glucose, but the other hexoses – fructose, lactose, xylose and galactose or glycerol totally suppressed both growth and BN synthesis. No habituation or adaptability to maltose or glucose occurred, evidenced by the lack of growth upon re-culture in respective medium. Glycerol, was not taken up alone, but was utilized to a considerable extent in the presence of low levels of sucrose for growth only but not BN synthesis. Red beet hairy root culture did not exogenously hydrolyse sucrose to hexoses, as there were only traces of reducing sugar present in the medium soon after inoculation, without an increase later, confirmed by HPLC. There was an increase in medium osmolarity in the presence of fructose indicating the exudation of certain compounds from the roots. Red beet hairy roots appear useful as a model system to study sugar metabolism/signalling due to their sensitivity to different sugars that may directly link to morphological changes and BN synthesis.  相似文献   

17.
Flavanone 3-hydroxylase (EC 1.14.11.9, F3H) plays a key role in anthocyanin biosynthesis, and sugars enhance anthocyanin accumulation and F3H expression in some other plants. However, information about the relationship between sugars, anthocyanin accumulation and F3H expression in grape berries has been little reported. Present experiment was done with sliced grape berry system. The optimum fruit developmental stage, sugar concentration, and incubation time in sugar induction anthocyanin accumulation and F3H expression were determined. Mannose and 2-deoxyglucose, glucose analogs known to be phosphorylated by hexokinase but are poorly metabolized, obviously induced the anthocyanin accumulation and F3H expression, whereas 3-O-methylglucose and 6-deoxyglucose, glucose analogs transported inside the cell but not substrates for hexokinase, did not induce them. Glucosamine and mannoheptulose, the specific inhibitors of hexokinase, blocked the activation induced by sugar on both anthocyanin accumulation and F3H expression.  相似文献   

18.
We review current knowledge of the most abundant sugars, sucrose, maltose, glucose and fructose, in the world's major crop plants. The sucrose‐accumulating crops, sugar beet and sugar cane, are included, but the main focus of the review is potato and the major cereal crops. The production of sucrose in photosynthesis and the inter‐relationships of sucrose, glucose, fructose and other metabolites in primary carbon metabolism are described, as well as the synthesis of starch, fructan and cell wall polysaccharides and the breakdown of starch to produce maltose. The importance of sugars as hormone‐like signalling molecules is discussed, including the role of another sugar, trehalose, and the trehalose biosynthetic pathway. The Maillard reaction, which occurs between reducing sugars and amino acids during thermal processing, is described because of its importance for colour and flavour in cooked foods. This reaction also leads to the formation of potentially harmful compounds, such as acrylamide, and is attracting increasing attention as food producers and regulators seek to reduce the levels of acrylamide in cooked food. Genetic and environmental factors affecting sugar concentrations are described.  相似文献   

19.
Cytokinin-dependent and cytokinin-autonomous strains of tobacco callus tissue (Nicotiana tabacum L. cv. ‘Wisconsin 38’) were grown on media containing sucrose, glucose and fructose, respectively. The tissues were kept 14 days in darkness and then transferred for 9 days to continuous light after which time the fresh weight and chlorophyll content were estimated. The highest chlorophyll concentration was recorded at sugar levels which were either suboptimal (sucrose in the case of cytokinin-dependent strain) or supraoptimal (all other sugars for both strains and sucrose for the cytokinin-autonomous strain) for tissue growth. The chlorophyll concentration was increased when the tissue was cultured on media containing glucose or fructose,i.e. sugars whioh did not support the growth as well as sucrose. Chlorophyll synthesis in the cytokinin-autonomous strain is significantly lower than in the cytokinin-dependent strain. This difference was independent of either sugar source or concentration. These results support the observed inverse relationship between tissue growth and plastid development and the limited metabolic activity of plastids in cytokinin-autonomous tissues.  相似文献   

20.
We have previously reported that sucrose modulates anthocyanin biosynthesis in cell suspension cultures of Vitis vinifera L. The main role of sugar in this response does not seem to be that of general carbohydrate source for the supply of energy. In the present work, a number of pharmacological agents were used to further investigate the components of the signal transduction pathway involved in the induction of anthocyanin biosynthesis by sugar. We found that the phosphorylation of hexose by hexokinase, but not its transport, has to be taken into account for the sucrose signal transduction leading to anthocyanin accumulation. Indeed, 3-O-methylglucose, a glucose analog transported into cells but not phosphorylated by hexokinase, has no effect on anthocyanin production. Mannose mimics the effect of sucrose in grape cells, and mannoheptulose, a specific inhibitor of hexokinase, reduces the accumulation of anthocyanins in response to sucrose. The results with the two latter analogs are discussed. Ca2+ channel blockers, verapamil and LaCl3, which were used to investigate the role of extracellular Ca2+, all inhibited the sugar response. Ca2+ depletion by pretreatment with ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) also blocked the sugar response, which was partially recovered when Ca2+ was added exogenously after Ca2+ depletion. The use of two potent calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphtalenesulphonamide (W7) and chlorpromazine, showed that calmodulin is involved in the sugar signal transduction. A protein kinase inhibitor, 6-dimethylaminopurine (6-DMAP), and the protein phosphatase inhibitors, endothall and cantharidin, also inhibited the sugar response. The results of the present study suggest the involvement of several components of general signal transduction pathways such as Ca2+, calmodulin, and protein kinases phosphatases in the induction of anthocyanin biosynthesis by sugar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号