首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Complement plays a pivotal role in the regulation of innate and adaptive immunity. It has been shown that the binding of C1q, a natural ligand of gC1qR, on T cells inhibits their proliferation. Here, we demonstrate that direct binding of the hepatitis C virus (HCV) core to gC1qR on T cells leads to impaired Lck/Akt activation and T-cell function. The HCV core associates with the surface of T cells specifically via gC1qR, as this binding is inhibited by the addition of either anti-gC1qR antibody or soluble gC1qR. The binding affinity constant of core protein for gC1qR, as determined by BIAcore analysis, is 3.8 x 10(-7) M. The specificity of the HCV core-gC1qR interaction is confirmed by reduced core binding on Molt-4 T cells treated with gC1qR-silencing small interfering RNA and enhanced core binding on GPC-16 guinea pig cells transfected with human gC1qR. Interestingly, gC1qR is expressed at higher levels on CD8(+) than on CD4(+) T cells, resulting in more severe core-induced suppression of the CD8(+)-T-cell population. Importantly, T-cell receptor-mediated activation of the Src kinases Lck and ZAP-70 but not Fyn and the phosphorylation of Akt are impaired by the HCV core, suggesting that it inhibits the very early events of T-cell activation.  相似文献   

3.
Hepatitis C virus (HCV) infection is highly efficient in the establishment of persistent infection, which leads to the development of chronic liver disease and hepatocellular carcinoma. Impaired T cell responses with reduced IFN-γ production have been reported to be associated with persistent HCV infection. Extracellular HCV core is a viral factor known to cause HCV-induced T cell impairment via its suppressive effect on the activation and induction of pro-inflammatory responses by antigen-presenting cells (APCs). The activation of STAT proteins has been reported to regulate the inflammatory responses and differentiation of APCs. To further characterize the molecular basis for the regulation of APC function by extracellular HCV core, we examined the ability of extracellular HCV core to activate STAT family members (STAT1, -2, -3, -5, and -6). In this study, we report the activation of STAT3 on human monocytes, macrophages, and dendritic cells following treatment with extracellular HCV core as well as treatment with a gC1qR agonistic monoclonal antibody. Importantly, HCV core-induced STAT3 activation is dependent on the activation of the PI3K/Akt pathway. In addition, the production of multifunctional cytokine IL-6 is essential for HCV core-induced STAT3 activation. These results suggest that HCV core-induced STAT3 activation plays a critical role in the alteration of inflammatory responses by APCs, leading to impaired anti-viral T cell responses during HCV infection.  相似文献   

4.
Hepatitis C virus (HCV) dysregulates innate immune responses and induces persistent viral infection. We previously demonstrated that HCV core protein impairs IL-12 expression by monocytes/macrophages (M/M(Φ)s) through interaction with a complement receptor gC1qR. Because HCV core-mediated lymphocyte dysregulation occurs through the negative immunomodulators programmed death-1 (PD-1) and suppressor of cytokine signaling-1 (SOCS-1), the aim of this study was to examine their role in HCV core-mediated IL-12 suppression in M/M(Φ)s. We analyzed TLR-stimulated, primary CD14(+) M/M(Φ)s from chronically HCV-infected and healthy subjects or the THP-1 cell line for PD-1, SOCS-1, and IL-12 expression following HCV core treatment. M/M(Φ)s from HCV-infected subjects at baseline exhibited comparatively increased PD-1 expression that significantly correlated with the degree of IL-12 inhibition. M/M(Φ)s isolated from healthy and HCV-infected individuals and treated with HCV core protein displayed increased PD-1 and SOCS-1 expression and decreased IL-12 expression, an effect that was also observed in cells treated with gC1qR's ligand, C1q. Blocking gC1qR rescued HCV core-induced PD-1 upregulation and IL-12 suppression, whereas blocking PD-1 signaling enhanced IL-12 production and decreased the expression of SOCS-1 induced by HCV core. Conversely, silencing SOCS-1 expression using small interfering RNAs increased IL-12 expression and inhibited PD-1 upregulation. PD-1 and SOCS-1 were found to associate by coimmunoprecipitation studies, and blocking PD-1 or silencing SOCS-1 in M/M(Φ) led to activation of STAT-1 during TLR-stimulated IL-12 production. These data suggested that HCV core/gC1qR engagement on M/M(Φ)s triggers the expression of PD-1 and SOCS-1, which can associate to deliver negative signaling to TLR-mediated pathways controlling expression of IL-12, a key cytokine linking innate and adaptive immunity.  相似文献   

5.

Background

Recent studies suggest that HCV infection is associated with progressive declines in pulmonary function in patients with underlying pulmonary diseases such as asthma and chronic obstructive pulmonary disease. Few molecular studies have addressed the inflammatory aspects of HCV-associated pulmonary disease. Because IL-8 plays a fundamental role in reactive airway diseases, we examined IL-8 signaling in normal human lung fibroblasts (NHLF) in response to the HCV nucleocapsid core protein, a viral antigen shown to modulate intracellular signaling pathways involved in cell proliferation, apoptosis and inflammation.

Methods

NHLF were treated with HCV core protein and assayed for IL-8 expression, phosphorylation of the p38 MAPK pathway, and for the effect of p38 inhibition.

Results

Our studies demonstrate that soluble HCV core protein induces significant increases in both IL-8 mRNA and protein expression in a dose- and time-dependent manner. Treatment with HCV core led to phosphorylation of p38 MAPK, and expression of IL-8 was dependent upon p38 activation. Using TNFα as a co-stimulant, we observed additive increases in IL-8 expression. HCV core-mediated expression of IL-8 was inhibited by blocking gC1qR, a known receptor for soluble HCV core linked to MAPK signaling.

Conclusion

These studies suggest that HCV core protein can lead to enhanced p38- and gC1qR-dependent IL-8 expression. Such a pro-inflammatory role may contribute to the progressive deterioration in pulmonary function recently recognized in individuals chronically infected with HCV.  相似文献   

6.

Background

Recent studies suggest that HCV infection is associated with progressive declines in pulmonary function in patients with underlying pulmonary diseases such as asthma and chronic obstructive pulmonary disease. Few molecular studies have addressed the inflammatory aspects of HCV-associated pulmonary disease. Because IL-8 plays a fundamental role in reactive airway diseases, we examined IL-8 signaling in normal human lung fibroblasts (NHLF) in response to the HCV nucleocapsid core protein, a viral antigen shown to modulate intracellular signaling pathways involved in cell proliferation, apoptosis and inflammation.

Methods

NHLF were treated with HCV core protein and assayed for IL-8 expression, phosphorylation of the p38 MAPK pathway, and for the effect of p38 inhibition.

Results

Our studies demonstrate that soluble HCV core protein induces significant increases in both IL-8 mRNA and protein expression in a dose- and time-dependent manner. Treatment with HCV core led to phosphorylation of p38 MAPK, and expression of IL-8 was dependent upon p38 activation. Using TNFα as a co-stimulant, we observed additive increases in IL-8 expression. HCV core-mediated expression of IL-8 was inhibited by blocking gC1qR, a known receptor for soluble HCV core linked to MAPK signaling.

Conclusion

These studies suggest that HCV core protein can lead to enhanced p38- and gC1qR-dependent IL-8 expression. Such a pro-inflammatory role may contribute to the progressive deterioration in pulmonary function recently recognized in individuals chronically infected with HCV.  相似文献   

7.
Zhao LJ  Zhao P  Chen QL  Ren H  Pan W  Qi ZT 《Cell proliferation》2007,40(4):508-521
OBJECTIVE: Hepatitis C virus (HCV) is a major pathogenic factor of liver diseases. During HCV infection, interaction of the envelope protein E2 of the virion, with target cells, is a crucial process for viral penetration into the cell and its propagation. We speculate that such interaction may trigger early signalling events required for HCV infection. MATERIALS AND METHODS: Human liver cell line L-02 was treated with HCV E2. The kinase phosphorylation levels of mitogen-activated protein kinase (MAPK) signalling pathways in the treated cells were analyzed by Western blotting. The proliferation of the E2-treated cells was evaluated by MTT assay. RESULTS: HCV E2 was shown to be an efficient activator for MAPK pathways. Levels of phosphorylation of upstream kinases Raf-1 and MEK1/2 were seen to be elevated following E2 treatment and similarly, phosphorylation levels of downstream kinases MAPK/ERK and p38 MAPK also increased in response to E2 treatment, and specificity of kinase activation by E2 was confirmed. E2-induced MAPK/ERK activation was inhibited by the MEK1/2 inhibitor U0126 in a concentration-dependent manner. Blockage of relevant cellular receptors reduced activation of Raf-1, MEK1/2, MAPK/ERK and p38 MAPK by E2, indicating efflux of the E2 signal from extracellular to the intracellular spaces. Thus, kinase cascades of MAPK pathways were continuously affected by E2 presence. Moreover, enhancement of cell proliferation by E2 appeared to be associated with the dynamic phosphorylation of MAPK/ERK and p38 MAPK. CONCLUSION: These results suggest that MAPK signalling pathways triggered by E2 may be a potential target for prevention of HCV infection.  相似文献   

8.
T cells play an important role in the control of hepatitis C virus (HCV) infection. We have previously demonstrated that the HCV core inhibits T-cell responses through interaction with gC1qR. We show here that core proteins from chronic and resolved HCV patients differ in sequence, gC1qR-binding ability, and T-cell inhibition. Specifically, chronic core isolates bind to gC1qR more efficiently and inhibit T-cell proliferation as well as gamma interferon (IFN-gamma) production more profoundly than resolved core isolates. This inhibition is mediated by the disruption of STAT phosphorylation through the induction of SOCS molecules. Silencing either SOCS1 or SOCS3 by small interfering RNA dramatically augments the production of IFN-gamma in T cells, thereby abrogating the inhibitory effect of core. Additionally, the ability of core proteins from patients with chronic infections to induce SOCS proteins and suppress STAT activation greatly exceeds that of core proteins from patients with resolved infections. These results suggest that the HCV core/gC1qR-induced T-cell dysfunction involves the induction of SOCS, a powerful inhibitor of cytokine signaling, which represents a novel mechanism by which a virus usurps the host machinery for persistence.  相似文献   

9.
IFN-alpha production by plasmacytoid dendritic cells (PDCs) is critical in antiviral immunity. In the present study, we evaluated the IFN-alpha-producing capacity of PDCs of patients with chronic hepatitis C virus (HCV) infection in treatment-naive, sustained responder, and nonresponder patients. IFN-alpha production was tested in PBMCs or isolated PDCs after TLR9 stimulation. Treatment-naive patients with chronic HCV infection had reduced frequency of circulating PDCs due to increased apoptosis and showed diminished IFN-alpha production after stimulation with TLR9 ligands. These PDC defects correlated with the presence of HCV and were in contrast with normal PDC functions of sustained responders. HCV core protein, which was detectable in the plasma of infected patients, reduced TLR9-triggered IFN-alpha and increased TNF-alpha and IL-10 production in PBMCs but not in isolated PDCs, suggesting HCV core induced PDC defects. Indeed, addition of rTNF-alpha and IL-10 induced apoptosis and inhibited IFN-alpha production in PDCs. Neutralization of TNF-alpha and/or IL-10 prevented HCV core-induced inhibition of IFN-alpha production. We identified CD14+ monocytes as the source of TNF-alpha and IL-10 in the HCV core-induced inhibition of PDC IFN-alpha production. Anti-TLR2-, not anti-TLR4-, blocking Ab prevented the HCV core-induced inhibition of IFN-alpha production. In conclusion, our results suggest that HCV interferes with antiviral immunity through TLR2-mediated monocyte activation triggered by the HCV core protein to induce cytokines that in turn lead to PDC apoptosis and inhibit IFN-alpha production. These mechanisms are likely to contribute to HCV viral escape from immune responses.  相似文献   

10.
Ligation of CD40 on monocytes through its interaction with CD40 ligand (CD154) present on activated T helper cells, results in activation of monocyte inflammatory cytokine synthesis and rescue of monocytes from apoptosis induced through serum deprivation. Both of these consequences of CD40 stimulation have been shown to be dependent on the induction of protein tyrosine kinase activity. CD40-mediated activation of protein tyrosine kinase activity and subsequent inflammatory cytokine production are abrogated by treatment of monocytes with the T helper type 2 cytokines interleukin 4 (IL-4) and interleukin 10 (IL-10). In the current study we demonstrate that stimulation of monocytes through CD40 resulted in the phosphorylation and activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) mitogen-activated protein kinases, whereas phosphorylation of mitogen-activated protein kinases family members p38 and c-Jun N-terminal kinase was not observed in response to this stimuli over the time course examined. PD98059, an inhibitor of the upstream activator of ERK1/2, the MAP/ERK kinase MEK1/2, suppressed IL-1beta and tumor necrosis factor-alpha production in a dose-dependent fashion. Pretreatment of monocytes with IL-4 and IL-10 inhibited CD40-mediated activation of ERK1/2 kinase activity when used individually, and are enhanced in effectiveness when used in combination. Together, the data demonstrate that CD40-mediated induction of IL-1beta and tumor necrosis factor-alpha synthesis is dependent on a MEK/ERK pathway which is obstructed by signals generated through the action of IL-4 and IL-10.  相似文献   

11.
Chronic hepatitis C virus (HCV) infection has a significantly increased prevalence of type 2 diabetes mellitus (T2DM). Insulin resistance is a critical component of T2DM pathogenesis. Several mechanisms are likely to be involved in the pathogenesis of HCV-related insulin resistance. Since we and others have previously observed that HCV core protein activates c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase, we examined the contribution of these pathways to insulin resistance in hepatocytes. Our experimental findings suggest that HCV core protein alone or in the presence of other viral proteins increases Ser(312) phosphorylation of the insulin receptor substrate-1 (IRS-1). Hepatocytes infected with cell culture-grown HCV genotype 1a or 2a displayed a significant increase in the Ser(473) phosphorylation status of the Ser/Thr kinase protein kinase B (Akt/PKB), while Thr(308) phosphorylation was not significantly altered. HCV core protein-mediated Ser(312) phosphorylation of IRS-1 was inhibited by JNK (SP600125) and phosphatidylinositol-3 kinase (LY294002) inhibitors. A functional assay also suggested that hepatocytes expressing HCV core protein alone or infected with cell culture-grown HCV exhibited a suppression of 2-deoxy-d-[(3)H]glucose uptake. Inhibition of the JNK signaling pathway significantly restored glucose uptake despite HCV core expression in hepatocytes. Taken together, our results demonstrated that HCV core protein increases IRS-1 phosphorylation at Ser(312) which may contribute in part to the mechanism of insulin resistance.  相似文献   

12.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

13.
Interleukin-2 (IL-2) is the major growth factor of activated T lymphocytes. By inducing cell cycle progression and protection from apoptosis in these cells, IL-2 is involved in the successful execution of an immune response. Upon binding its receptor, IL-2 activates a variety of signal transduction pathways, including the Ras/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and Janus kinase (JAK)/STAT cascades. In addition, activation of phosphatidylinositol 3-kinase (PI3K) and several of its downstream targets has also been shown. However, the coupling of STAT3 serine phosphorylation to PI3K in response to IL-2 has yet to be shown in either T cell lines or primary human T cells. This report shows that the PI3K inhibitors LY294002 and wortmannin block activation of MEK and ERK by IL-2 in primary human T cells. Moreover, these inhibitors significantly reduce IL-2-triggered STAT3 serine phosphorylation without affecting STAT5 serine phosphorylation. Analysis of the effects of these inhibitors on cell cycle progression and apoptosis strongly suggests that PI3K-mediated events, which includes STAT3 activation, are involved in IL-2-mediated cell proliferation but not cell survival. Finally, results presented illustrate that in primary human T cells, activation of Akt is insufficient for IL-2-induced anti-apoptosis. Thus, these results demonstrate that IL-2 stimulates PI3K-dependent events that correlate with cell cycle progression, but not anti-apoptosis, in activated primary human T cells.  相似文献   

14.
The Ras guanylnucleotide exchange protein SOS undergoes feedback phosphorylation and dissociation from Grb2 following insulin receptor kinase activation of Ras. To determine the serine/threonine kinase(s) responsible for SOS phosphorylation in vivo, we assessed the role of mitogen-activated, extracellular-signal-regulated protein kinase kinase (MEK), extracellular-signal-regulated protein kinase (ERK), and the c-JUN protein kinase (JNK) in this phosphorylation event. Expression of a dominant-interfering MEK mutant, in which lysine 97 was replaced with arginine (MEK/K97R), resulted in an inhibition of insulin-stimulated SOS and ERK phosphorylation, whereas expression of a constitutively active MEK mutant, in which serines 218 and 222 were replaced with glutamic acid (MEK/EE), induced basal phosphorylation of both SOS and ERK. Although expression of the mitogen-activated protein kinase-specific phosphatase (MKP-1) completely inhibited the insulin stimulation of ERK activity both in vitro and in vivo, SOS phosphorylation and the dissociation of the Grb2-SOS complex were unaffected. In addition, insulin did not activate the related protein kinase JNK, demonstrating the specificity of insulin for the ERK pathway. The insulin-stimulated and MKP-1-insensitive SOS-phosphorylating activity was reconstituted in whole-cell extracts and did not bind to a MonoQ anion-exchange column. In contrast, ERK1/2 protein was retained by the MonoQ column, eluted with approximately 200 mM NaCl, and was MKP-1 sensitive. Although MEK also does not bind to MonoQ, immunodepletion analysis demonstrated that MEK is not the insulin-stimulated SOS-phosphorylating activity. Together, these data demonstrate that at least one of the kinases responsible for SOS phosphorylation and functional dissociation of the Grb2-SOS complex is an ERK-independent but MEK-dependent insulin-stimulated protein kinase.  相似文献   

15.
The catalytic domains of most eukaryotic protein kinases are highly conserved in their primary structures. Their phosphorylation within the well-known activation T-loop, a variable region between protein kinase catalytic subdomains VII and VIII, is a common mechanism for stimulation of their phosphotransferase activities. Extracellular signal–regulated kinase 1 (ERK1), a member of the extensively studied mitogen-activated protein kinase (MAPK) family, serves as a paradigm for regulation of protein kinases in signaling modules. In addition to the well-documented T202 and Y204 stimulatory phosphorylation sites in the activation T-loop of ERK1 and its closest relative, ERK2, three additional flanking phosphosites have been confirmed (T198, T207, and Y210 from ERK1) by high-throughput mass spectrometry. In vitro kinase assays revealed the functional importance of T207 and Y210, but not T198, in negatively regulating ERK1 catalytic activity. The Y210 site could be important for proper conformational arrangement of the active site, and a Y210F mutant could not be recognized by MEK1 for phosphorylation of T202 and Y204 in vitro. Autophosphorylation of T207 reduces the catalytic activity and stability of activated ERK1. We propose that after the activation of ERK1 by MEK1, subsequent slower phosphorylation of the flanking sites results in inhibition of the kinase. Because the T207 and Y210 phosphosites of ERK1 are highly conserved within the eukaryotic protein kinase family, hyperphosphorylation within the kinase activation T-loop may serve as a general mechanism for protein kinase down-regulation after initial activation by their upstream kinases.  相似文献   

16.
Liver/lymph node-specific intercellular adhesion molecule-3-grabbing integrin (L-SIGN) facilitates hepatitis C virus (HCV) infection through interaction with HCV envelope protein E2. Signaling events triggered by the E2 via L-SIGN are poorly understood. Here, kinase cascades of Raf–MEK–ERK pathway were defined upon the E2 treatment in NIH3T3 cells with stable expression of L-SIGN. The E2 bound to the cells through interaction with L-SIGN and such binding subsequently resulted in phosphorylation and activation of Raf, MEK, and ERK. Blockage of L-SIGN with antibody against L-SIGN reduced the E2-induced phosphorylation of Raf, MEK, and ERK. In the cells infected with cell culture-derived HCV, phosphorylation of these kinases was enhanced by the E2. Up-regulation of Raf–MEK–ERK pathway by HCV E2 via L-SIGN provides new insights into signaling cascade of L-SIGN, and might be a potential target for control and prevention of HCV infection.  相似文献   

17.
gC1qR, a complement receptor for C1q, plays a pivotal role in the regulation of inflammatory and antiviral T cell responses. Several pathogens, including hepatitis C virus, exploit gC1qR-dependent regulatory pathways to manipulate host immunity. However, the molecular mechanism(s) of gC1qR signaling involved in regulating inflammatory responses remains unknown. We report the selective inhibition of TLR4-induced IL-12 production after cross-linking of gC1qR on the surface of macrophages and dendritic cells. Suppression of IL-12 did not result from increased IL-10 or TGF-beta, but was dependent on PI3K activation. Activation of PI3K and subsequent phosphorylation of Akt define an intracellular pathway mediating gC1qR signaling and cross-talk with TLR4 signaling. This is the first report to identify signaling pathways used by gC1qR-mediated immune suppression, and it establishes a means of complement-mediated immune suppression to inhibit Th1 immunity crucial for clearing pathogenic infection.  相似文献   

18.
We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent.MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation.Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.  相似文献   

19.
We have identified a direct physical interaction between the stress signaling p38alpha MAP kinase and the mitogen-activated protein kinases ERK1 and ERK2 by affinity chromatography and coimmunoprecipitation studies. Phosphorylation and activation of p38alpha enhanced its interaction with ERK1/2, and this correlated with inhibition of ERK1/2 phosphotransferase activity. The loss of epidermal growth factor-induced activation and phosphorylation of ERK1/2 but not of their direct activator MEK1 in HeLa cells transfected with the p38alpha activator MKK6(E) indicated that activated p38alpha may sequester ERK1/2 and sterically block their phosphorylation by MEK1.  相似文献   

20.
Utilizing mutants of extracellular signal-regulated kinase 2 (ERK2) that are defective for intrinsic mitogen-activated protein kinase or ERK kinase (MEK) binding, we have identified a convergent signaling pathway that facilitates regulated MEK-ERK association and ERK activation. ERK2-delta19-25 mutants defective in MEK binding could be phosphorylated in response to mitogens; however, signaling from the Raf-MEK pathway alone was insufficient to stimulate their phosphorylation in COS-1 cells. Phosphorylation of ERK2-delta19-25 but not of wild-type ERK2 in response to Ras V12 was greatly inhibited by dominant-negative Rac. Activated forms of Rac and Cdc42 could enhance the association of wild-type ERK2 with MEK1 but not with MEK2 in serum-starved adherent cells. This effect was p21-activated kinase (PAK) dependent and required the putative PAK phosphorylation sites T292 and S298 of MEK1. In detached cells placed in suspension, ERK2 was complexed with MEK2 but not with MEK1. However, upon replating of cells onto a fibronectin matrix, there was a substantial induction of MEK1-ERK2 association and ERK activation, both of which could be inhibited by dominant-negative PAK1. These data show that Rac facilitates the assembly of a mitogen-activated protein kinase signaling complex required for ERK activation and that this facilitative signaling pathway is active during adhesion to the extracellular matrix. These findings reveal a novel mechanism by which adhesion and growth factor signals are integrated during ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号