首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Little Mere, U.K., received large quantities of sewage effluent until 1991, when the effluent was diverted. Experiments, carried out in mesocosms in 1992 and 1993, were designed to predict the effects of: (i) reduced external nutrient loading; (ii) reduced internal loading from the sediment; and (iii) recolonization by fish of the better aerated water. Treatments included isolation of the water from the underlying sediment or exposure to the sediment (which lacked plants in 1992, but was covered by Potamogeton berchtoldii in 1993) crossed with different population densities of Rutilus rutilus in 1992 and of Perca fluviatilis in 1993.
2. Exposure to sediment (as opposed to isolation from it) resulted in no net change in the biovolumes of most major algal groups, but this masked major complementary effects on individual species. The experiments showed a decreasing influence of the sediment, between 1992 and 1993, in determining water chemistry, and an increasing pH between years but no increase in cyanophyte dominance. This had been anticipated because a lake upstream provides abundant inocula, and conditions in Little Mere after diversion of effluent were expected to favour cyanophytes.
3. Roach and perch additions to the mesocosms resulted in reductions in Daphnia populations but increases in numbers of small Cladocera and copepods. Plant-associated Cladocera were unaffected by fish. The presence of submerged plants to some extent reduced fish predation effects on Daphnia hyalina .
4. The experimental results in general accurately predicted subsequent events in the open lake.  相似文献   

2.
Carvalho  Laurence 《Hydrobiologia》1994,275(1):53-63
Top-down control of phytoplankton by zooplankton is possible through reductions in density of zooplanktivorous fish. Little Mere is a shallow lake where the effects of sewage effluent caused such a reduction. This allowed the large-bodied cladoceran, Daphnia magna Straus, to develop huge populations, preventing potentially large algal crops from developing.Subsequent diversion of the effluent is anticipated to lead to recovery of the fish community, reduced numbers of large-bodied grazers, and increased phytoplankton biomass. Whether the aquatic plant community, present in Little Mere, is resilient to such changes may depend upon whether cyanophytes are favoured, or not.  相似文献   

3.
Little Mere, a small shallow lake, has been monitored for four years, since its main source of nutrients (sewage effluent) was diverted. The lake has provided strong evidence for the persistence of a clear water state over a wide range of nutrient concentrations. It had clear water at extremely high nutrient concentrations prior to effluent diversion, associated with high densities of the large body-sized grazer, Daphnia magna, associated with low fish densities and fish predation. Following sewage effluent diversion in 1991, the nutrient concentrations significantly declined, the oxygen concentrations rose, and fish predation increased. The dominance of large body-sized grazers shifted to one of relatively smaller body-sized animals but the clear water state has been maintained. This is probably due to provision of refuges for grazers by large nymphaeid stands (also found prior to diversion). There has been a continued decrease in nutrient concentrations and expansion of the total macrophyte coverage, largely by submerged plants, following effluent diversion. The grazer community of Little Mere has also responded to this latter change with a decline in daphnids and increase in densities of weed-associated grazers. The presence of large densities of such open water grazers was the apparent main buffer mechanisms of the clear water state until 1994. The lake has, so far, maintained its clear water in the absence of such grazers. Thus, new buffer mechanisms appear to operate to stabilize the ecosystem. Little Mere appears to have shifted from previous top-down controlled clear water state to a bottom-up controlled clear water state.  相似文献   

4.
The effects of introducing a zooplanktivorous fish, three-spined stickleback, (Gasterosteus aculeatus) and a benthivorous fish, tench (Tinca tinca) separately and in combination to replicated experimental enclosures with two density levels of white water lily (Nymphaea alba) were studied in Little Mere, UK. Numbers of Daphnia hyalina were high and only slightly diminished at reduced lily densities, probably due to stickleback predation, but there was no consequential effect on phytoplanktonic chlorophyll a concentrations. Tench reduced the numbers of gastropods but not of other macroinvertebrates, and in turn increased the biomass of periphyton growing on artificial substrata within the enclosures. The higher lily density reduced oxygen concentrations and pH values and increased total phosphorus and soluble reactive phosphorus concentrations but otherwise had little effect on water chemistry. There was little interactive effect of the fish species. The results are integrated with those of six other such enclosure experiments carried out in Little Mere since 1992.  相似文献   

5.
1. Lake restoration from eutrophication often rests on a simple paradigm that restriction of phosphorus sources will result in recovery of former relatively clear‐water states. This view has apparently arisen from early successful restorations of deep lakes in catchments of poorly weathered rocks. Lakes in the lowlands, however, particularly shallow ones, have proved less tractable to restoration. This study of three lowland lakes provides insights that illuminate a more complex picture. 2. The lakes lie in a sequence along a single stream in a mixed urban and rural landscape. Severely deoxygenating effluent from an overloaded sewage treatment works was diverted from the catchment in 1991. Effects on two lakes, Little Mere (zmax <2 m) and Rostherne Mere (zmax 31 m) were followed until 2002. Mere Mere (zmax = 8 m), upstream of the former works, acted as a comparison for changes in water chemistry. Mere Mere showed no change in total phosphorus (TP), total inorganic nitrogen, or planktonic chlorophyll a concentrations. Increased winter rainfall was associated with higher winter soluble reactive phosphorus (SRP) and ammonium concentrations in its water. 3. Little Mere changed from a deoxygenated, highly enriched, fishless system, with large populations of Daphnia magna Straus, clear water and about 40% aquatic plant cover, to a slightly less clear system following diversion. Daphnia magna was replaced by D. hyalina Leydig as fish recolonised. Spring peaks of chlorophyll a declined but summer concentrations increased significantly. Annual mean chlorophyll a concentrations thus showed no change. Submerged plants became more abundant (up to 100% cover), with fluctuating community composition from year to year. Summer release of SRP from the sediment was substantial and has not decreased since 1993. The summer phytoplankton was apparently controlled by nitrogen availability perhaps with some influence of zooplankton grazing. SRP was always very abundant. The lake appeared to have reached a quasi‐stable state by 2002. 5. Rostherne Mere showed a steady decline in TP and SRP concentrations following effluent diversion apparently as a result of steady dilution by water with lower phosphorus concentration. Decline in phosphorus concentrations was much less rapid than expected because of internal remobilisation from the hypolimnion and sediments. There have been no changes in chlorophyll a concentration or of nitrogen availability and by 2002 the phytoplankton probably remained limited by a combination of mixing, grazing and nitrogen. 6. A seeming paradox is, thus, that immense changes in phosphorus budgets have shown no consequences for phytoplankton chlorophyll concentrations in either of the lakes, although the seasonal distribution has altered in Little Mere. Although these case studies deviate from others, for both shallow and deep lakes, they represent distinctive situations rather than undermining conventional models.  相似文献   

6.
Little Mere (Cheshire) is a small (2.7 ha) and shallow (average depth 0.7 m) fertile lake in Cheshire, UK. Nymphaeids cover almost 40 % of its entire surface during the growing season (April to October) and practically all the rest is covered by a mixed community of submerged plants. The lake was intensively sampled for plant-associated Cladocera and zooplankters from April 1998-April 2000. Samples were collected at five sites across the lake, three of them located within lily beds, the other two over submerged plant beds of mixed composition. Specific sampling techniques were developed for floating lily leaves, petioles, submerged plants and water. Significant horizontal differences were identified for most cladoceran species, both open-water and plant-associated, for chydorid periphyton scrapers and for filter-feeders. Daphnia hyalina (L.) and Ceriodaphnia sp were significantly more abundant in lily beds than in more open water in both growing seasons, suggesting lily beds are an effective refuge against fish predation. Size-structure and egg-ratio data support this contention. Egg-ratio models were examined for Daphnia hyalina and Simocephalus vetulus (O.F. Müller), a plant-associated cladoceran. The fertility of S. vetulus in lily beds was generally high throughout growing seasons. The construction of egg-ratio models for this species was hampered by their generally very patchy distributions.  相似文献   

7.
Debbie Stephen  Brian   《Freshwater Biology》1998,39(4):699-713
1. Mechanisms stabilizing the plant-dominated clear-water state were investigated in Little Mere, U.K. Replicated, factorial, mesocosm experiments, carried out in 1995 and 1996, were designed to investigate the relative importance of top-down (zooplankton grazing) and bottom-up (nitrogen-limitation) control in limiting algal growth, and the role of macrophytes in these processes. Treatments included increased salinity (1995) and sticklebacks (1996) to reduce zooplankton numbers, weekly nitrate additions and removal of macrophytes. 2. Contrary to the results of other studies, submerged plants did not reduce nitrate concentrations. Owing to the high stickleback density in the enclosures with fish, macrophytes did not provide a refuge for zooplankton during the experiment. In Little Mere, however, where fish densities are lower, macrophytes probably play a key role in maintaining clear water by providing refuge for pelagic zooplankton and habitat for attached Cladocera. 3. Phytoplankton in Little Mere was not nitrogen- (N) limited during the growing season. Although nitrogen availability sets a maximum potential phytoplankton biomass it was not realized owing to control by zooplankton grazing.  相似文献   

8.
1. Mesocosm experiments were carried out to examine the relative importance of top down (fish predation) and bottom up (nutrient addition) controls on phytoplankton abundance in a small shallow lake, Little Mere, U.K., in 1998 and 1999. These experiments were part of a series at six sites across Europe. 2. In the 1998 experiment, top‐down processes (through grazing of large Cladocera) were important in determining phytoplankton biomass. The lack of plant refugia for zooplankton was probably important in causing an increasing chlorophyll a concentration even at intermediate fish density. Little Mere normally has abundant macrophytes but they failed to develop substantially during both years. Bottom‐up control was not important in 1998, most probably because of high background nutrient concentrations, as a result of nutrient release from the sediments. 3. In 1999 neither top‐down nor bottom‐up processes were significant in determining phytoplankton biomass. Large cladoceran grazers were absent even in the fish‐free enclosures, probably because dominance of cyanobacteria and high phytoplankton biomass made feeding conditions unsuitable. As in 1998, bottom‐up control of phytoplankton was not important, owing to background nutrient concentrations that were even higher in 1999 than in 1998, perhaps because of the warmer, sunnier weather. 4. The differing outcomes of the two experiments in the same lake with similar experimental designs highlight the importance of starting conditions. These conditions in turn depended on overall weather conditions prior to the experiments.  相似文献   

9.
After the diversion of a nutrient-rich inflow, the eutrophic lake, Alderfen Broad, initially showed reduced total phosphorus concentrations and phytoplankton populations, clear water and the establishment of submerged macrophytes. Internal P loading then increased, perhaps stimulated by the senescence of submerged macrophytes and exacerbated by the lack of flushing. Cyanophytes appeared in the summer of two years. As a consequence of poor recruitment of roach (Rutilus rutilus (L.)), the chief zooplanktivore, and a summerkill of the fish population, populations of large-bodied Cladocera (Daphnia hyalina/ longispina and ultimately D. magna) developed. In the long-term, these may have limited the further development of phytoplankton populations and clear water and submerged macrophytes returned. During this latter period, internal P release has remained high (> 380 µg l-1), thereby indicating the scope for biomanipulation even in eutrophic conditions. However, isolation of the lake has led to a decrease in water level (which through increased temperatures and lowered dissolved oxygen levels was probably responsible for the fish deaths) and further concentration of internal P load. Sediment is now being removed to reestablish greater water depth.  相似文献   

10.
Complementary impact of copepods and cladocerans on phytoplankton   总被引:9,自引:0,他引:9  
The differences in the impact of two major groups of herbivorous zooplankton (Cladocera and Copepoda) on summer phytoplankton in a mesotrophic lake were studied. Field experiments were performed in which phytoplankton were exposed to different densities of two major types of herbivorous zooplankton, cladocerans and copepods. Contrary to expectation, neither of the two zooplankton groups significantly reduced phytoplankton biomass. However, there were strong and contrasting impacts on phytoplankton size structure and on individual taxa. Cladocerans suppressed small phytoplankton, while copepods suppressed large phytoplankton. The unaffected size classes compensated for the loss of those affected by enhanced growth. After contamination of the copepod mesocosms with the cladoceran Daphnia , the combined impact of both zooplankton groups caused a decline in total phytoplankton biomass.  相似文献   

11.
1. The restoration of deep lakes has traditionally focused on reducing the external phosphorus loading. 2. Following the diversion of sewage effluent, that led to marked reductions in nutrient concentrations in its main inflow, Rostherne Mere has shown no reduction in phosphorus or chlorophyll a concentrations. A shallow lake upstream (Little Mere), however, has shown a marked response to effluent diversion. 3. Nutrient budgets for Rostherne Mere reveal that sewage effluent was by far the most significant external source of total phosphorus and that diffuse drainage from the catchment was the most significant external source of dissolved inorganic nitrogen. Phosphorus loads from groundwater and a bird roost were insignificant. Internal sources of phosphorus were, however, considerable and were largely responsible for the observed delay in recovery. 4. Phosphorus limitation of phytoplankton biomass may never be attainable because of substantial internal and diffuse sources of phosphorus, combined with a long retention time. Nitrogen is likely to be more important in limiting phytoplankton biomass. Control of diffuse nitrogen sources may therefore be more effective in the restoration of the deeper lakes of this region.  相似文献   

12.
M. Beklioglu  O. Ince  I. Tuzun 《Hydrobiologia》2003,490(1-3):93-105
Nutrient loading in lakes is recognized as a serious threat to water quality. Over 25 years of raw sewage effluent discharge shifted Lake Eymir from a state dominated by submerged plants to a turbid water state. Successful effluent diversion undertaken in 1995 achieved 88% and 95% reductions in the areal loading of total phosphorus (TP) and dissolved inorganic nitrogen (DIN), respectively. Furthermore, the reduced load of TP was very close to the suggested threshold areal load (0.6 g m–2 yr–1) to attain recovery. Even though diversion also reduced the in-lake TP level by half, the poor water clarity and low submerged plant coverage (112 ± 43 cm and 2.5% coverage of the lake total surface area, respectively) persisted. Domination of the fish stock by planktivorous tench (Tinca tinca L.) and the benthivorous common carp (Cyprinus carpio L.) (66 ± 0.7 and 31 ± 1 kg CPUE, respectively) appeared to perpetuate the poor water condition. A substantial fish removal effort over 1 year achieved a 57% reduction in the fish stock which led to a 2.5-fold increase in Secchi disk transparency. This increase occurred largely because of a 4.5-fold decrease in the inorganic suspended solid concentration, and to some extent, a decrease in chlorophyll-a concentration. A strong top-down effect of fish on the large-sized grazers was evident as density and the body size of Daphnia pulexde Geer increased significantly after the fish removal. Even though the spring and annual euphotic depths occurred well above the maximum and mean depths of the lake, respectively, re-development of submerged plants was poor (6.2% coverage). A weak re-establishment of submerged plants might be attributed to an insufficiently viable seed bank, inappropriate chemical conditions of the sediment (severe oxygen deficiency), or to the high coot (Fulica atra L.) density. However, the top-down effect of fish appeared to be of great importance in determining water clarity, and in turn, conditions for submerged plant development in a warm temperate lake as recorded in the north temperate lakes. Furthermore, this study provides evidence for the importance of top-down control of fish, which, in turn, can be effectively utilised as a restoration strategy in warm-temperate lakes as well. More applications, along with long monitoring programs, are needed to develop a better understanding about requirements for biomanipulation success in this climate.  相似文献   

13.
The history of selection of Daphnia magna populations living in North African temporary ponds may differ from populations inhabiting permanent ponds. Laboratory experiments were conducted to examine the effect of fish Gambusia holbrooki and invertebrate Notonecta glauca kairomones on the life history traits of the freshwater Cladocera Daphnia magna Straus. With fish kairomones, Daphnia reproduced early and had a significantly smaller size at first reproduction (SFR) and a smaller size of neonates compared to control. In contrast, daphnids reared in water treated with Notonecta glauca had no effect on the age at first reproduction but females were also smaller and produced smaller neonates.  相似文献   

14.
SUMMARY 1. Macrophyte loss from Sites of Special Scientific Interest in England has become widespread over the last 20 years. One reason for this may be changing trends in angling, a multimillion pound industry that has an enormous impact on aquatic ecosystems. Stocking with cyprinid fish is a common angling management practice but the particular fish species and distribution of their biomass may be crucial to the ecosystem. 2. Carp (Cyprinus carpio), roach (Rutilus rutilus), bream (Abramis brama) and tench (Tinca tinca) at biomasses ranging from 0 to 800 kg ha?1 and at various sizes were placed into experimental mesocosms in Little Mere, a shallow, fertile lake in Cheshire, U.K. The effects these treatments had on the aquatic ecosystem were studied over two summers. Specifically the effects of the treatments on macrophyte growth, benthic and macrophytic macro‐invertebrate populations, water chemistry, epiphyton production and plankton survival were investigated. 3. Carp had a greater detrimental effect on the macrophytes than bream, tench and in particular roach. A biomass of fish > 200 kg ha?1 adversely affected the extent of macrophyte growth. 4. The decline in macrophyte growth was most likely as a result of increased epiphyton growth that probably reduced the amount of light and carbon dioxide available to the plant. There were no observed direct fish impacts on macrophytes. 5. The chemical data suggested that inorganic nitrogen levels were low and it is possible that release of nitrogen, from fish excreta, followed by immediate uptake, could have been a major factor stimulating epiphyton growth and subsequently macrophyte loss. Phosphorus concentrations increased even in the controls and substantial amounts were available. Phosphorus stimulation can therefore be discounted. Macrophyte‐associated macro‐invertebrates were positively correlated with epiphyton load but had no impact on the extent of epiphytic growth. Shading from disturbed sediment or phytoplankton was also unimportant.  相似文献   

15.
Daphnids undergoing diel horizontal migration (DHM) to seek daytime refuge in the littoral zones of shallow lakes are likely to confront chemical cues from littoral-associated predators and macrophytes. In field experiments, we investigated how the natural suite of chemicals occurring in a wholly vegetated lake as well as within plant-free mesocosms with artificial macrophytes and epiphytes (either fishless or containing small fish) influenced individual daphnid growth. In laboratory experiments, we further examined how water containing chemicals from either a submerged macrophyte (waterweed, Elodea canadensis ), a planktivorous fish (roach, Rutilus rutilus ) or both impacted daphnid growth and life-history traits. In the field, we found the greatest suppression of daphnid growth in vials containing water from the wholly vegetated lake relative to growth of daphnids housed in vials containing spring water. Water from the mesocosm with fish also suppressed daphnid growth. Daphnid growth in water from the fishless mesocosm, which contained plastic plants colonized by epiphytes, did not differ from that of daphnids grown in spring water. In the lab experiment, daphnids exposed to Elodea chemicals took longer to mature and possessed fewer eggs than daphnids in media without Elodea chemicals. Daphnids exposed to chemicals from both Elodea and roach reproduced the earliest and at a smaller size. Daphnids exposed to only roach chemical cues did not significantly differ from daphnids in control media for age or size at first reproduction although they did possess fewer eggs. Daphnia responses to chemicals from either roach or Elodea alone did not predict how Daphnia responded to the combined influence of multiple chemical cues. Our results suggest that prolonged exposure to macrophyte chemicals incurs costs for Daphnia .  相似文献   

16.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

17.
Seasonal fishing moratorium with selective fish harvesting is a common means of increasing fish production in Asia. Such manipulation might be expected to lead to a seasonal variation in abundance and composition of fish and predation pressure on zooplankton, and consequently a seasonal change in the Cladocera populations. In this study, we examined the seasonal dynamics of cladocerans in a subtropical plateau lake in southwestern China, Lake Erh, in which a fishing moratorium was implemented in spring and early summer. Cladocerans showed a bimodal seasonal distribution linked to variations in predation pressure induced by the seasonal fishing moratorium. When predation was low in winter because of cool water temperatures and decreasing fish density, Daphnia galeata appeared in the water column and increased towards spring. The cladoceran peaked in the middle of the fishing moratorium, coinciding with a clear water phase. The feeding rate increased with temperature in the late moratorium, allowing planktivorous fish to strongly suppress large daphnids. Small cladocerans benefited from the reduced competition with large daphnids by increasing their numbers rapidly, which resulted in a second peak of cladocerans in the fishing season.  相似文献   

18.
  • 1 The littoral microcrustacean community (Cladocera and Copepoda) was examined from 1989 to 1991 in a lake experimentally acidified to pH 4.5, and from 1992 to 1997 during the early stages of pH recovery.
  • 2 Cladoceran abundance declined significantly from 1989 to 1991 (pH 4.5), but species richness did not change. Acantholeberis curvirostris, Simocephalus serrulatus, Latona spp. (Latona setifera, L. parviremis), and all species of chydorid Cladocera declined markedly in abundance while at pH 4.5. The abundance of cyclopoid copepods was low and Ceriodaphnia and calanoid copepods were absent.
  • 3 Recovery of the community was subsequently monitored as pH was incrementally changed to a target pH 5.1 in 1992 and 1993, and to 5.8 in 1994–97. Species richness remained unchanged. Chydorid cladocerans remained at low abundance in 1992, and only Chydorus cf. brevilabris increased substantially from 1993 to 1996. Non‐chydorid Cladocera increased in abundance in 1992, declined again in 1993, then gradually increased (mainly due to Ophryoxus gracilis) in 1994–96. All species declined in 1997 as minnows recolonized the lake. The calanoid copepod Leptodiaptomus minutus was present in low numbers in 1997.
  • 4 The microcrustacean community in the littoral zone of Lake 302S has not yet shown consistent signs of recovery from acidification.
  相似文献   

19.
As expected from its short renewal time, the hypertrophic Lingese Reservoir responded rapidly but incompletely to external nutrient reduction in 1993. Although there was a sudden decline in lake phosphorus and chlorophyll concentrations, the ‘turbid regime’ revealed resistance in this weakly stratified reservoir of intermediate depth. Draining the reservoir in autumn 1995 provided an unprecedented opportunity for sediment treatment—the phosphorus-rich surface layer was inverted and covered with deeper nutrient-poor layers—and removal of the dense cyprinid fish stock which had not responded to sewage diversion, at least in the short term. Commencing with refilling in 1999, a new fish stock was built up from 2000 by only stocking predators (fingerlings of pike, pike-perch and larger specimens of rainbow-trout in the first years) in combination with catch restrictions. Concomitantly, with the appearance of daphnids in 1999, a ‘clear water regime’ was established and lake water phosphorus concentrations decreased at unchanged external loading. Reduced zooplanktivory as well as reduced fish-mediated phosphorus release from the sediments were driving mechanisms behind successful reduction of internal loading and achievement of a ‘clear water regime’. Hence, phosphorus concentrations were revealed to be a response variable not only to input management but also to food-web management. As the development of cyprinid dominance was prevented in the long-term, there is ample evidence that the fish community responded to the applied management measures as expected featuring successful food-web management. Overall, the biological structure was revealed to be of major importance for lake phosphorus availability and turbidity as in shallow lakes, without, however, the establishment of macrophyte dominance.  相似文献   

20.
1. The flow of phosphorus and nitrogen through the food web of the shallow, eutrophic lake Wolderwijd was analysed for 2 different years before and for 1 year after food web manipulation.
2. After fish removal the water became clear and the growth of macrophytes began. Fish removal resulted in a significant reduction of the total nutrient pool in the water, but differences between the nutrient cycles before and after the experiment were mainly caused by a gradual change driven by a reduced phosphorus input.
3. The zooplankton biomass before and after food web manipulation did not change significantly. Unfavourable food conditions and predation by young fish limited zooplankton biomass after the food web manipulation.
4. After fish removal benthic algae, fish, zoobenthos and macrophytes form the largest pools of nutrients apart from the sediment top layer. However, they contribute only little to nutrient cycles in the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号