首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsome fractions from hypocotyls of dark-grown soybean (Glycine max [L.] Merrill) seedlings incorporated myo-inositol into phosphatidylinositol by an exchange reaction stimulated by Mn2+ (optimum at 10 mm) and cytidine nucleotides (CMP = CDP CTP) but not by Mg2+ or nucleotides other than cytidine nucleotides. The activity was membrane associated, with an optimum pH of 8, stimulated by auxin, and inhibited by certain thiol reagents or by heating above 40°C. With radioactive inositol, phosphatidylinositol was the only radioactive product. That turnover was by myo-inositol exchange was verified from experiments where unlabeled inositol replaced already incorporated inositol with approximately the same kinetics as for the incorporation of label. Both the incorporation and the displacement reactions were stimulated by Mn2+ and CMP and both were responsive to auxin with comparable dose dependency. Corresponding exchange activities with choline or ethanolamine were not observed. The phosphatidylinositol-myo-inositol exchange activity was low or absent from plasma membrane, tonoplast, and mitochondria enriched fractions. The activity co-localized on free-flow electrophoresis and aqueous two-phase partition with NADPH cytochrome c reductase and latent IDPase, markers for endoplasmic reticulum and Golgi apparatus, respectively. With microsomes incubated with both ATP and inositol, polyphosphoinositides were unlabeled demonstrating separate locations for the inositol exchange and phosphatidylinositol kinase reactions. Thus, the auxin-responsive inositol turnover activity of soybean membranes is distinct from the usual de novo biosynthetic pathway. It is not the result of a traditional D-type phospholipase and appears not to involve plasma membrane-associated polyphosphoinositide metabolism. It most closely resembles previously described phosphatidylinositol-myo-inositol exchange activities of plant and animal endoplasmic reticulum.  相似文献   

2.
Micromolar concentrations of CMP produced a large increase in Mn2+-dependent phosphatidylinositol:myo-inositol exchange activity in isolated nerve endings or synaptosomes. The apparent Km for CMP was 2 microM, and that for myo-inositol was 38 microM. Only cytidine nucleotides were capable of enhancing activity, and this effect is probably specific for CMP, because the synaptosomal preparation rapidly converted CTP or CDP to CMP. Manganese did not affect the uptake of myo-inositol into the synaptosomal cytosolic fraction or myo-inositol levels. Determinations of myo-inositol specific activity showed that the Mn2+-enhanced labeling of phosphatidylinositol was not accompanied by a decrease of label content in free myo-inositol. This lack of an effect on intrasynaptosomal myo-inositol and the dependence of exchange on cytidine nucleotides whereas cytidine itself was previously found to be without effect show that for the bulk of Mn2+-dependent exchange activity, it is the myo-inositol in the incubation medium that is being directly incorporated into membrane-bound phosphatidyl-inositol. Because CMP dependence is the hallmark of exchange catalyzed by CDP-diacylglycerol:inositol phosphatidyl transferase, this enzyme is likely to be responsible for most of the exchange activity in synaptosomes. The strong affinity of this exchange system for CMP suggests that endogenous levels of this nucleotide might support Mn2+-dependent exchange in the absence of added nucleotide.  相似文献   

3.
Hydrolysis of phosphatidylcholine by phospholipase A2 of synaptic membranes i n Tris-CHl buffer was stimulated by cyclic AMP, cyclic GMP, cyclic CMP, cyclic UMP and adenosine (0.1 mm). In the presence of 1 mm-NaF and cofactors, the same cyclic nucleotides and adenosine (10 mm) stimulated the incorporation of added oleate into the choline glycerophospholipids of synaptic membranes. Cyclic AMP and noradrenaline stimulated the incorporation of added oleate into position 2 of choline glycerophospholipid. Stimulation of net acylation was increased by preincubation in conditions which stimulated hydrolysis of phosphatidylcholine. Cyclic AMP only slightly stimulated the transfer of oleate from oleoyl-CoA into choline glycerophospholipid. The optimum concentration of CaCl2 for the stimulation of hydrolysis by phospholipase A2 by cyclic AMP was 1 mum. Stimulation of the incorporation of added oleate was maximal in the CaCl2 concentration range 1 mum-1mm. MgCl2 also enhanced stimulations, maximum effects being obtained with concentrations of 10 mum and 0.5 mm for hydrolysis by phospholipase A2 and incorporation of added oleate respectively. ATP enhanced the stimulation of incorporation of oleate but had no effect on the cyclic nucleotide stimulation of hydrolysis of added phosphatidylcholine by phospholipase A2. Adenosine, guanosine, ADP and 5'-AMP (all at 1 mm) inhibited the stimulation of incorporation of oleate by cyclic nucleotides and inhibited the transfer of oleate from oleoyl-CoA to phospholipid. They did not inhibit the stimulation of hydrolysis of added phosphatidylcholine (by phospholipase A2) by cyclic nucleotides, but inhibited the stimulation by noradrenaline, acetylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine) and histamine. Preincubation of synaptic membranes in the water or buffer increased the net activity of phospholipase A2. Preincubation with a mixture of ATP and MgCl2 increased the initial rate of acylation of membrane lipid.  相似文献   

4.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

5.
Mn2+ greatly increases the incorporation of myo-[3H]inositol into phosphatidylinositol (PI) of brain and other tissues by stimulating the activity of a PI-myo-inositol exchange enzyme. This study examined the ability of norepinephrine (NE) and carbachol to stimulate the hydrolysis of [3H]PI formed in the absence and presence of Mn2+-stimulated [3H]inositol exchange. Rat cerebral cortical slices were incubated with myo-[3H]inositol for 60 min in an N-2-hydroxyethyl piperazine-N'-2-ethanesulfonic acid (HEPES) buffer without or with MnCl2 (1 mM). The tissue was washed and further incubated with unlabeled myo-inositol and LiCl (10 mM). Prelabeled slices were then incubated with NE (0.1 mM) or carbachol (1 mM) to induce agonist-stimulated [3H]PI hydrolysis. Mn2+ treatment resulted in eight- and sixfold increases in control levels of [3H]PI and [3H]inositol monophosphate [( 3H]IP), respectively. Both NE and carbachol stimulated [3H]IP formation in tissue prelabeled without or with manganese. However, the degree of stimulation (percentage of control values) was greatly attenuated in the presence of Mn2+. In the absence of Mn2+ treatment, NE decreased [3H]PI radioactivity in the tissue to 80% of control values. However, NE did not decrease [3H]PI radioactivity in the Mn2+-treated tissue. These data demonstrate that Mn2+ stimulates incorporation of myo-[3H]inositol into a pool of PI in brain that has a rapid turnover but is not coupled to agonist-induced hydrolysis.  相似文献   

6.
Phosphatidylinositol-inositol exchange in a rabbit lung   总被引:3,自引:0,他引:3  
A microsomal fraction prepared from rabbit lung tissue was found to catalyze CDPdiacylglycerol-independent incorporation of [3H]inositol into phosphatidylinositol. This incorporation resulted from CMP-dependent phosphatidylinositol-inositol exchange and did not constitute a net synthesis of phosphatidylinositol. The phosphatidylinositol-inositol exchange activity was distinct from the phospholipid-base exchange enzymes and was specific for inositol. Optimal in vitro phosphatidylinositol-inositol exchange activity was observed at pH 8.5--8.8 and either Mn2+ or Mg2+ was essential for activity. Mercaptoethanol stimulated phosphatidylinositol-inositol exchange and Hg2+ inhibited this activity. In the absence of CMP, no phosphatidylinositol-inositol exchange was observed. CDP (and to a smaller extent CTP) also supported phosphatidylinositol-inositol exchange and this appeared to occur via the generation of CMP during incubations. The apparent Km values of the phosphatidylinositol-inositol exchange enzyme for CMP and inositol were 0.4 mM and 11 microM, respectively. When CDPdiacylglycerol was present at a concentration optimal for CDPdiacylglycerol : inositol transferase activity, CMP-dependent phosphatidylinositol-inositol exchange activity was still observed. However, in the presence of Hg2+ CDPdiacylglycerol inhibited phosphatidylinositol-inositol exchange activity. Several properties of the phosphatidylinositol-inositol exchange enzyme resemble those of CDPdiacylglycerol : inositol transferase, but the two enzymes appear distinct on the basis of different degrees of inhibition by either Ca2+, Hg/+ or heat, and on the basis of different changes in activity during lung development.  相似文献   

7.
1. s-RNA nucleotidyltransferase incorporated CMP into phosphodiesterase-treated s-RNA more rapidly in the presence of Mg(2+) (10mm) than in the presence of Mn(2+) (2mm). UMP was incorporated more rapidly in the presence of Mn(2+), and at high ionic strength the incorporation of CMP was also more rapid in the presence of Mn(2+). 2. The capacity of phosphodiesterase-treated s-RNA for CMP, UMP and AMP was increased in the presence of Mn(2+). Terminal sequences of more than one UMP or AMP residue were synthesized, but these atypical reactions were inhibited when CTP was added. CMP was incorporated rapidly to form -pCpC terminal sequences and then more slowly as longer chains were formed, but very little CMP was incorporated into s-RNA-pCpCpA. 3. CMP was incorporated into phosphodiesterase-treated 5s RNA and ribosomal RNA to form short chains of polyC attached to the primer RNA. This reaction was inhibited by the presence of s-RNA. 4. A small Mn(2+)-dependent incorporation of CMP was also primed by poly(A).(U) and poly(C).(I).  相似文献   

8.
Rat liver microsomes showed very active uridine diphosphate-galactose pyrophosphatase activity leading to the hydrolysis of uridine diphosphate-galactose into galactose1-phosphate and finally into galactose. The activity was observed in presence of buffers with wide ranges of pH. Different concentrations of divalent cations, such as Mn2+, Mg2+, and Ca2+ had no significant effect on the enzyme activity. A number of nucleotides and their derivatives inhibited the pyrophosphatase activity. Of these, different concentrations of uridine monophosphate, cytidine 5′-phosphate and cytidine 5′-diphosphate have slight or no effect; cytidine 5′-triphosphate, adenosine 5′-triphosphate, guanosine 5′-triphosphate, cytidine 5′-diphosphate-glucose and guanosine 5′-diphosphate-glucose showed strong inhibitory effect whereas cytidine 5′-diphosphate-choline showed a moderate effect on the pyrophosphatase. All these nucleotides also showed variable stimulatory effects on uridine diphosphate-galactose:glycoprotein galactosyltransferase activity in the microsomes which could be partly related to their inhibitory effects on uridine diphosphate-galactose pyrophosphatase. Among them uridine monophosphate, cytidine 5′-phosphate, and cytidine 5′-diphosphate stimulated galactosyltransferase activity without showing appreciable inhibition of pyrophosphatase, cytidine 5′-diphosphate-choline, although did not inhibit pyrophosphatase as effectively as cytidine 5′-triphosphate, guanosine 5′-triphosphate, adenosine 5′-triphosphate, cytidine 5′-diphosphate-glucose, and guanosine 5′-diphosphate-glucose but stimulated galactosyltransferase activity as well as those. The fact that cytidine 5′-diphosphate-choline stimulated galactosyltransferase more effectively than cytidine 5′-phosphate, cytidine 5′-diphosphate, and cytidine 5′-triphosphate suggested an additional role of the choline moiety in the system. It has been also shown that cytidine 5′-diphosphate-choline can affect the saturation of galactosyltransferase enzyme at a much lower concentration of uridine diphosphate-galactose. Most of the pyrophosphatase and galactosyltransferase activities were solubilized by deoxycholate and the membrane pellets remaining after solubilization still retained some galactosyltransferase activity which was stimulated by cytidine 5′-diphosphate-choline. In different membrane fractions a concerted effect of both uridine diphosphate-galactose pyrophosphatase and glycoprotein:galactosyltransferase enzymes on the substrate uridine diphosphate-galactose is indicated and their eventual controlling effects on the glycopolymer synthesis in vitro or in vivo need careful evaluation.  相似文献   

9.
In order to study some of its enzymatic properties, phosphatidylinositol synthase 1 (AtPIS1) from the plant Arabidopsis thaliana was expressed in Escherichia coli, a host naturally devoid of phosphatidylinositol (PtdIns). In the context of the bacterial membrane and in addition to de novo synthesis, the plant enzyme is capable of catalysing the exchange of the inositol polar head for another inositol. Our data clearly show that the CDP-diacylglycerol-independent exchange reaction can occur using endogenous PtdIns molecular species or PtdIns molecular species from soybean added exogenously. Exchange has been observed in the absence of cytidine monophosphate (CMP), but is greatly enhanced in the presence of 4 microm CMP. Our data also show that AtPIS1 catalyses the removal of the polar head in the presence of much higher concentrations of CMP, in a manner that suggests a reverse of synthesis. All of the PtdIns metabolizing activities require free manganese ions. EDTA, in the presence of low Mn2+ concentrations, also has an enhancing effect.  相似文献   

10.
Cytidylate cyclase activity, which enzymatically converts cytidine 5'-triphosphate (CTP) to cytidine 3',5'-cyclic monophosphate (cyclic CMP), has been demonstrated in mouse tissue homogenates by use of a highly sensitive enzyme immunoassay (EIA) specific for cyclic CMP. Cyclic CMP formation is dependent on the amount of homogenate and on the incubation time. Although the enzyme activity was detected at wide ranges of pH from 6.8 to 11.5, the maximal activity was observed at around pH 9.4. The optimal temperature was 37 degrees C. Cytidylate cyclase activity was almost completely lost if the homogenates were heated at 90 degrees C for 3 min prior to use. The enzyme reaction exhibited typical Michaelis-Menten kinetics with an apparent Km for CTP of approx. 0.31 mM. Cyclic CMP formation was greatly enhanced with 4 mM Mn2+, Mg2+, Co2+; Mn2+ was the most effective. Fe2+ and Ca2+ were without effect. Cu2+ and Zn2+ at a concentration of 0.1 to 0.5 mM were inhibitory to Mn2+-dependent activity. Moreover, the enzyme activity was inhibited by several nucleotides including ATP, ADP, 5'-AMP, and GTP. Cytidylate cyclase activity was found to be present in all homogenates from a variety of mouse tissues examined except heart, with the highest level found in brain, and the lowest in liver.  相似文献   

11.
From wheat embryos, tRNA nucleotidyltransferase (EC 2.7.7.25) was isolated. By chromatography on Sepharose 6B, DEAE-cellulose and affinity chromatography on tRNA-hydrazyl-Sepharose 4B, 7000-fold purification of the enzyme was achieved. The enzyme required for its activity Mg2+ or Mn2+ ion. ATP inhibited incorporation of CMP from CTP into lupin tRNA, and CTP acted as a competitive inhibitor of AMP incorporation from ATP. The regulatory role of ATP in incorporation of terminal CMP into tRNA is discussed. The incorporation of terminal CMP into tRNA deprived of terminal CCA or CA, was also studied.  相似文献   

12.
The insulin-like action of Mn2+ was investigated in adipocytes isolated from male mice of the NZY strain. In agreement with previous reports Mn2+ was found to stimulate both the oxidation of [U-14C]glucose to CO2 and the incorporation of [U-14C]glucose into total lipid and fatty acid, and to inhibit lipolysis stimulated by epinephrine, cyclic AMP or theophylline. The maximum effect of Mn2+ was greater than that of a maximal concentration of insulin and when both agents were present in these concentrations the effect was similar to that observed with Mn2+ alone. Mn2+ lowered the level of cyclic AMP in adipocytes incubated with isoproterenol. The effect was seen as early as 1 minute and it was greater than a maximal concentration of insulin. When Mn2+ was added to suspensions of adipocytes it increased the activity of the membrane-bound low Km cyclic nucleotide phosphodiesterase in subsequently prepared homogenates. The enzyme was stimulated 1.8-fold by Mn2+ compared with a 1.7-fold stimulation by insulin and a 2-fold stimulation in the presence of both Mn2+ and insulin.  相似文献   

13.
CDPdiacylglycerol:inositol transferase activity in rabbit lung tissue has been characterized and the optimum conditions for assaying this enzyme in vitro were determined. Rabbit lung tissue CDPdiacylglycerol:inositol transferase activity was found primarily in the microsomal fraction. The pH optimum of the enzyme activity was between 8.8 and 9.4, and the reaction was dependent on either Mn2+ or Mg2+. Detergents and Ca2+ inhibited the activity of the enzyme. The apparent Km values of the enzyme for CDPdioleoylglycerol and myoinositol were 0.18 mM and 0.10 mM, respectively. The reversibility of the reaction catalyzed by CDPdiacylglycerol:inositol transferase in microsomes prepared from rabbit lung tissue was demonstrated by the synthesis of [3H]CMPdiacylglycerol when [3H]CMP and phosphatidylinositol were present in the incubation mixture. The reverse reaction was characterized and its importance in the regulation of the acidic phospholipid composition of surfactant during lung development is discussed. The pH optimum for the reverse reaction was 6.2, and the reverse reaction was also dependent on Mn2+ or Mg2+. The apparent Km value of CDPdiacylglycerol:inositol transferase for CMP was found to be 2.8 mM.  相似文献   

14.
Phospholipid base exchange activity using choline as substrate was detected in plasma membranes (PM) and other subcellular fractions of rat liver, with microsomes (MS) showing the highest specific activity. In contrast, phospholipase D activity was only detected in PM. In PM, choline exchanged for phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS), whereas ethanolamine exchanged for PE and PS, and serine exchanged for PS. Ca2+ (10 microM or higher) stimulated choline incorporation into PC in MS and PM, whereas Mg2+ (10 microM or higher) stimulated it only in PM. Ethanolamine and serine incorporation into PM phospholipids was also stimulated by Ca2+, and inositol incorporation by Mn2+. Phospholipase D activity was substantial in the presence of EGTA and was slightly stimulated by Ca2+ concentrations less than 500 microM. It was undetectable without Mg2+. Low concentrations of oleate (1 mM or less) stimulated phospholipase D activity. These concentrations inhibited choline base exchange activity, whereas higher concentrations (3-8 mM) were stimulatory. Comparison of the subcellular distribution and Ca2+, Mg2+, and oleate effects on choline base exchange and phospholipase D activities supports the view that they are catalyzed by different enzymes. The incorporation of choline, but not ethanolamine or serine, into the phospholipids of PM, but not MS, was stimulated by micromolar concentrations of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) and other slowly hydrolyzable analogues of GTP. GDP, GMP, and other nucleoside triphosphates and their analogues were ineffective. GTP gamma S stimulation of base exchange activity was dependent upon Mg2+ and was inhibited by high concentrations of guanosine 5'-O-2-(thio)diphosphate. In the presence of low concentrations of GTP gamma S, ATP and its slowly hydrolyzable analogues stimulated base exchange activity. Dose-response curves for these nucleotides revealed a potency order consistent with mediation by purinergic receptors of the P2Y type. Base exchange activity stimulated by ATP plus GTP gamma S or GTP gamma S alone was not altered by treatment with pertussis or cholera toxins. These results suggest that the choline base exchange activity of liver PM is regulated by a pertussis toxin-insensitive G-protein linked to P2Y purinergic receptors.  相似文献   

15.
Rabbit liver tRNA nucleotidyltransferase catalyzes the incorporation of AMP and CMP into the model acceptor substrate, cytidine. The apparent Km for cytidine in this reaction is about 80 to 90 mM which is more than 10(4) greater than the Km values for the natural substrates, tRNA lacking the terminal AMP (tRNA-C-C) and tRNA lacking the terminal pCpA (tRNA-C). The Vmax values for the model reaction are only 5% and 2% of those for the reaction with the natural tRNA substrates. Addition of the tRNA fragments, tRNA lacking the terminal XpCpCpA sequence (tRNA-(X - 1)p) and tRNA lacking the terminal CpCpA (tRNA-Xp), greatly stimulates the rate of nucleotide incorporation into cytidine. In the case of CMP incorporation into cytidine, tRNA-Xp stimulates the reaction about 60-fold, to a rate similar to that of the normal reaction with tRNA-C. The tRNA fragment has no effect on the apparent Km of either cytidine or CTP, but only alters the Vmax of the reaction. Stimulation of the model reactions is maximal with tRNA fragments of specific chain lengths. These results provide direct evidence that the nonreacting regions of a substrate molecule play an important role in the catalytic efficiency of an enzyme.  相似文献   

16.
1. An enzyme preparation from rat-liver microsomes incorporated all four ribonucleotides from the corresponding triphosphates into ribosomal RNA. The reaction was Mn(2+)-dependent, but UMP incorporation also occurred in the presence of Mg(2+). 2. The incorporation of any one ribonucleotide was inhibited by the presence of the other three ribonucleoside triphosphates and by denatured DNA. 3. The product of the reaction consisted of short chains of homopolymer attached to the primer ribosomal RNA. 4. ;Soluble' RNA, synthetic polyribonucleotides, and oligoribonucleotides were also effective primers for CMP incorporation. 5. When phosphodiesterase-treated ;soluble' RNA was the primer, CMP was incorporated into positions usually occupied by the normal terminal trinucleotide sequence of intact ;soluble' RNA, but the enzyme did not synthesize a specific terminal sequence consisting of a defined number of CMP residues.  相似文献   

17.
The incorporation of myo-inositol into phosphatidylinositol by two routes (CTP-independent and CTP-independent) has been investigated in homogenates prepared from isolated bovine oligodendrocyte perikarya. The CTP-dependent route has the higher maximum velocity of inositol incorporation and can utilise either Mn2+ or Mg2+ as a divalent ion cofactor. This route of inositol incorporation is also strongly inhibited by Ca2+ ions at concentrations less than 1 mM. The primary site of the inhibitory action appears to be the enzyme CDP-diglyceride inositol phosphatidyl transferase (EC 2.7.8.11) though synthesis of CDP-diacylglycerol is also inhibited by endogenous Ca2+ present in the oligodendrocyte homogenate. In contrast, CTP-independent inositol incorporation into phosphatidylinositol is only stimulated by Mn2+ (Zn2+,Cu2+, Mg2+, Ca2+ and Co2+ are ineffective) and is not inhibited by Ca2+, at least up to a concentration of 1 mM.  相似文献   

18.
An increase in concentration of cytosolic Ca2+ ([Ca2+]i) is associated with an accelerated influx of 45Ca2+ when cultured RBL-2H3 cells are stimulated with either antigen or analogs of adenosine although these agents act via different receptors and coupling proteins (Ali, H., Cunha-Melo, J.R., Saul, W.F., and Beaven, M.A. (1990) J. Biol. Chem. 265, 745-753). The same mechanism probably operates for basal Ca2+ influx in unstimulated cells and for the accelerated influx in stimulated cells. This influx had the following characteristics. 1) It was decreased when cells were depolarized with high external K+; 2) it was blocked by other cations (La3+ greater than Zn2+ greater than Cd2+ greater than Mn2 = Co2+ greater than Ba2+ greater than Ni2+ greater than Sr2+) either by competing with Ca2+ at external sites (e.g. La3+ or Zn2+) or by co-passage into the cell (e.g. Mn2+ or Sr2+); and 3) the inhibition of influx by K+ and the metal ions had exactly the same characteristics whether cells were stimulated or unstimulated even though influx rates were different. The dependence of various cellular responses on influx of Ca2+ was demonstrated as follows. The stimulated influx of Ca2+, rise in [Ca2+]i, and secretion, could be blocked in a concentration-dependent manner by increasing the concentration of La3+, but concentrations of La3+ (greater than 20 microM) that suppressed influx to below basal rates of influx markedly suppressed the hydrolysis of inositol phospholipids (levels of inositol 1,4,5-trisphosphate were unaffected). Some metal ions, e.g. Mn2+ and Sr2+, however, supported the stimulated hydrolysis of inositol phospholipid and some secretion in the absence of Ca2+. Thus a basal rate of influx of Ca2+ was required for the full activation of inositol phospholipid hydrolysis, but in addition an accelerated influx was necessary for exocytosis.  相似文献   

19.
1. The regional and subcellular distribution of the incorporation of sn-[(14)C]glycerol 3-phosphate into rat brain lipids in vitro was investigated and compared with the relative specific activity of various chemical and enzyme markers. The similarity between the subcellular distribution of this incorporation and of NADPH-cytochrome c reductase activity indicated that the synthesis of phosphatidic acid via this route correlated with the presence of endoplasmic reticulum. 2. Experiments in which various amounts of the microsomal fraction were added to fixed amounts of nuclear, myelin, nerve-ending and mitochondrial preparations clearly demonstrated that the endoplasmic-reticulum contamination of these fractions was entirely responsible for the incorporation of sn-[(14)C]glycerol 3-phosphate. 3. The presence of CMP or CTP inhibited the incorporation of sn-[(14)C]glycerol 3-phosphate into the whole homogenate. Similar effects were observed with individual fractions, except for the mitochondria. With the mitochondrial fraction the effect of these cytidine nucleotides varied with the preparation, stimulating in some preparations and inhibiting with other preparations. The presence of CDP-choline stimulated the incorporation into the whole homogenate and to a lesser extent into the subcellular fractions. 4. These results indicate that the various organelles of the central nervous system are more dependent on endoplasmic reticulum for the production of glycerolipids de novo than has previously been appreciated.  相似文献   

20.
Mild trypsin treatment of canine cardiac microsomes consisting largely of sarcoplasmic reticulum vesicles produced a severalfold activation of oxalate-facilitated calcium uptake. The increase in calcium uptake was associated with an increase in ATP hydrolysis. Proteases other than trypsin were also effective although to a lesser degree. Trypsin produced a shift of the Ca2+ concentration dependency curve for calcium uptake toward lower Ca2+ concentrations, which was almost identical with that produced by phosphorylation of microsomes by cyclic AMP dependent protein kinase when the trypsin and the protein kinase were present at maximally activating concentrations. The Hill numbers (+/- SD) of the Ca2+ dependency after treatment of microsomes with trypsin (1.5 +/- 0.1) or protein kinase (1.7 +/- 0.1) were similar and were not significantly different from those for untreated control microsomes (1.6 +/- 0.1 and 1.8 +/- 0.1, respectively). Autoradiograms of sodium dodecyl sulfate-polyacrylamide electrophoretic gels indicate that 32P incorporation into phospholamban (Mr 27.3K) or its presumed monomeric subunit (Mr 5.5K) was markedly reduced when trypsin-treated microsomes were incubated in the presence of cyclic AMP dependent protein kinase and [gamma-32P]ATP compared to control microsomes incubated similarly but pretreated with trypsin inhibitor inactivated trypsin. The activation of calcium uptake by increasing concentrations of trypsin was paralleled by the reduction of phosphorylation of phospholamban. Trypsin treatment of microsomes previously thiophosphorylated in the presence of cyclic AMP dependent protein kinase and [gamma-35S]thio-ATP did not result in a loss of 35S label from phospholamban, which suggests that phosphorylation of phospholamban protects against trypsin attack.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号