首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invasion success of exotic plants is often attributed to escape from natural enemies in their introduced ranges and subsequent evolutionary change in resource allocation from defense to growth and reproduction. We tested this idea by comparing resistance, tolerance, and growth between native (China) and invasive (US) populations of kudzu (Peuraria montana var. lobata) exposed to natural herbivores in the native range. The percentage of foliar damage was much higher in invasive populations than in native populations, indicating that plants from invasive populations had lower resistance to herbivory. Regression of total mass on percentage of foliar damage showed no significant differences in tolerance to herbivory between native and invasive populations. However, stem diameter and mass were significantly greater in invasive populations than in native populations. Our results may suggest geographic variation in herbivory damage and plant growth among kudzu native and invasive populations, but the role of herbivores influencing kudzu invasion requires further investigation.  相似文献   

2.
Successful invasions by exotic plants are often attributed to a loss of co‐evolved specialists and a re‐allocation of resources from defense to growth and reproduction. However, invasive plants are rarely completely released from insect herbivory because they are frequently attacked by generalists in their introduced ranges. The novel generalist community may also affect the invasive plant's defensive strategies and resource allocation. Here, we tested this hypothesis using American pokeweed (Phytolacca americana L.), a species that has become invasive in China, which is native to North America. We examined resistance, tolerance, growth and reproduction of plant populations from both China and the USA when plants were exposed to natural generalist herbivores in China. We found that leaf damage was greater for invasive populations than for native populations, indicating that plants from invasive ranges had lower resistance to herbivory than those from native ranges. A regression of the percentage of leaf damage against mass showed that there was no significant difference in tolerance between invasive and native populations, even though the shoot, root, fruit and total mass were larger for invasive populations than for native populations. These results suggest that generalist herbivores are important drivers mediating the defensive strategies and resource allocation of the invasive American pokeweed.  相似文献   

3.
Introduced plants may leave their specialized herbivores behind when they invade new ranges. The Evolution of Increased Competitive Ability (EICA) Hypothesis holds that this escape from herbivory could lead to reduced investment in defenses, thereby freeing resources for growth and reproduction. We tested the prediction that introduced genotypes of Solidago gigantea would outperform native genotypes when grown in the absence of herbivores, and examined whether tolerance to insect herbivory has changed in introduced genotypes. S. gigantea is native to North America and an exotic invasive in Europe. Insect damage reduced plant growth and biomass for both native and exotic genotypes. While there was no evidence that continent of origin influenced the degree to which plants compensated for herbivory, the mechanisms contributing to recovery differed for native and exotic plants. Damaged US plants showed enhanced photosynthetic rates to a greater extent than damaged European plants, while damaged European plants carried more leaves than damaged US plants. At the end of the season, leaf mass of European plants was significantly greater than that of US plants. Contrary to the predictions of the EICA hypothesis, US plants were more likely to flower than European plants. European plants invested significantly more of their total reproductive biomass into rhizomes rather than flowers than US plants. While other work with S. gigantea has supported some aspects of the EICA hypothesis, the results reported here generally do not. We conclude that multiple factors influence the success of introduced plants.  相似文献   

4.
Release from natural enemies may favor invasive plants evolving traits associated with reduced herbivore‐resistance and faster‐growth in introduced ranges. Given a genetic trade‐off between resistance and tolerance, invasive plants could also become more tolerant to herbivory than conspecifics in the native range. We conducted a field common garden study in the native range of Sapium sebiferum using seeds from native Chinese populations and invasive North American populations to compare their growth and herbivory resistance. We also performed a cage‐pot experiment to compare their resistance and tolerance to Bikasha collaris beetles that are specialist feeders on S. sebiferum trees in China. Results of the common garden study showed that Sapium seedlings of invasive populations relative to native populations were more frequently attacked by native herbivores. Growth and leaf damage were significantly higher for invasive populations than for native populations. Growth of invasive populations was not significantly affected by insecticide spray, but insecticide spray benefited that of native populations. In the bioassay trial, beetles preferentially consumed leaf tissue of invasive populations compared to native populations when beetles had a choice between them. Regression of percent leaf damage on biomass showed that invasive populations tolerated herbivory more effectively than native populations. Our results suggest that S. sebiferum from the introduced range had lower resistance but higher tolerance to specialist herbivores. Both defense strategies could have evolved as a response to the escape from natural enemies in the introduced range.  相似文献   

5.
Abstract Plant invasions create novel plant–insect interactions. The EICA (evolution of increased competitive ability) hypothesis proposes that invasive plants will reallocate resources from defense to growth and/or reproduction because they have escaped from their co‐evolved insect natural enemies. Testing multiple herbivory by monophagous and oligophagous herbivores and simultaneous measurement of various plant traits will provide new insights into the evolutionary change of invasive plants. In this context, we conducted a common garden experiment to compare plant growth and reproduction, chemical and physical defense, and plant responses to herbivory by different types of herbivores between invasive North American populations and native East Asian populations of mile‐a‐minute weed, Persicaria perfoliata. We found that invasive mile‐a‐minute exhibited lower biomass, flowered earlier and had greater reproductive output than plants from the native range. Compared with native populations, plants from invasive populations had lower tannin content, but exhibited higher prickle density on nodes and leaves. Thus our results partially support the EICA hypothesis. When exposed to the monophagous insect, Rhinoncomimus latipes and the oligophagous insects, Gallerucida grisescens and Smaragdina nigrifrons, more damage by herbivory was found on invasive plants than on natives. R. latipes, G. grisescens and S. nigrifrons had strong, moderate and weak impacts on the growth and reproduction of mile‐a‐minute, respectively. The results indicate that mile‐a‐minute may have evolved a higher reproductive capacity in the introduced range, and this along with a lack of oligophagous and monophagous herbivores in the new range may have contributed to its invasiveness in North America.  相似文献   

6.
The evolution of increased competitive ability (EICA) hypothesis predicts that release from natural enemies in the introduced range favors exotic plants evolving to have greater competitive ability and lower herbivore resistance than conspecifics from the native range. We tested the EICA hypothesis in a common garden experiment with Sapium sebiferum in which seedlings from native (China) and invasive (USA) populations were grown in all pairwise combinations in the native range (China) in the presence of herbivores. When paired seedlings were from the same continent, shoot mass and leaf damage per seedling were significantly greater for plants from invasive populations than those from native populations. Despite more damage from herbivores, plants from invasive populations still outperformed those from native populations when they were grown together. Increased competitive ability and higher herbivory damage of invasive populations relative to native populations of S. sebiferum support the EICA hypothesis. Regression of biomass against percent leaf damage showed that plants from invasive populations tolerated herbivory more effectively than those from native populations. The results of this study suggest that S. sebiferum has become a faster-growing, less herbivore-resistant, and more herbivore-tolerant plant in the introduced range. This implies that increased competitive ability of exotic plants may be associated with evolutionary changes in both resistance and tolerance to herbivory in the introduced range. Understanding these evolutionary changes has important implications for biological control strategies targeted at problematic invaders.  相似文献   

7.
Siemann E  Rogers WE 《Oecologia》2003,135(3):451-457
Invasive plants are often larger in their introduced range compared to their native range. This may reflect an evolved reduction in defense and increase in growth in response to low herbivory in their introduced range. Key elements of this scenario include genetic differences in defense and growth yet uniformly low rates of herbivory in the field that dissociate defense and herbivore damage for alien species. We conducted a laboratory experiment with Melanoplus angustipennis grasshoppers and Chinese Tallow Tree seedlings ( Sapium sebiferum) from its native range (China) and its introduced range (Texas, USA) where it is invasive. We caged grasshoppers with pairs of Sapium seedlings from the same continent or different continents. The amounts of leaf area removed from Texas and China seedlings, and their height growth rates, were indistinguishable when both seedlings in the pair were from the same continent. However, when grasshoppers had a choice between seedlings from different continents, they removed more Texas Sapium foliage than China Sapium foliage and height growth rates were higher for China Sapium seedlings compared to Texas seedlings. Grasshopper growth rates increased with greater Sapium foliage consumption. In a common garden in Texas, Sapium seedlings from Texas grew 40% faster than those from China. Chewing insect herbivores removed little Sapium foliage in the field experiment. Although grasshoppers preferred to feed on Texas Sapium when offered a choice in the laboratory, extremely low herbivory levels in the field may have allowed the Texas seedlings to outperform the China seedlings in the common garden. These results demonstrate post-invasion genetic differences in herbivore resistance and growth of an invasive plant species together with a decoupling of defense and herbivore choice in the introduced range.  相似文献   

8.
Although induced defenses are widespread in nature, and a potentially important strategy used by invasive plants, it is unclear how induced defenses vary among populations and whether the intensity and duration of induced defenses depends on herbivore type. For invasive plants, low herbivore loads in their introduced ranges can lead to differences in herbivore defense compared to their native ranges, but we currently know little about how induced defenses vary among native and invasive populations. We conducted a greenhouse experiment to examine variation in one type of induced defense, extrafloral nectar (EFN) production, among native and invasive populations of Chinese tallow tree, Triadica sebifera. We experimentally manipulated herbivory from an exotic generalist scale insect, a native generalist caterpillar, both herbivores, or neither and then examined EFN production by Triadica. Damage from leaf-chewing caterpillars resulted in strongly induced EFN in both native and invasive populations while damage from phloem-feeding scales did not. Extrafloral nectar production and dissolved solute content peaked 4 days after caterpillar herbivory for both native and invasive populations. Number and proportion of leaves producing EFN, EFN volume and concentration of dissolved solutes were similar among native and invasive populations. These results suggest that selection for indirect defenses may be different than selection for other defenses in the introduced ranges of invasive plants, as constitutive and induced EFN production is retained in invasive populations.  相似文献   

9.
The success of introduced species is often attributed to release from co-evolved enemies in the new range and a subsequent decreased allocation to defense (EICA), but these hypotheses have rarely been evaluated for systems with low host-specificity of enemies. Here, we compare herbivore utilization of the brown seaweed, Fucus evanescens, and its coexisting competitors both in its native and new ranges, to test certain predictions derived from these hypotheses in a system dominated by generalist herbivores. While F. evanescens was shown to be a preferred host in its native range, invading populations supported a less diverse herbivore fauna and it was less preferred in laboratory choice experiments with important herbivores, when compared to co-occurring seaweeds. These results are consistent with the enemy release hypothesis, despite the fact that the herbivore communities in both regions were mainly composed of generalist species. However, in contrast to the prediction of EICA, analysis of anti-grazing compounds indicated a higher allocation to defense in introduced compared to native F. evanescens. The results suggest that the invader is subjected to less intense enemy control in the new range, but that this is due to an increased allocation to defense rather than release from specialized herbivores. This indicates that increased resistance to herbivory might be an important strategy for invasion success in systems dominated by generalist herbivores.  相似文献   

10.
Boege  Karina  Dirzo  Rodolfo 《Plant Ecology》2004,175(1):59-69
Based on resource allocation theory, a negative correlation is predicted between resource availability and plant defense against herbivore attack. Plants growing in resource-limited environments should display lower growth and higher defense against herbivores than plants growing where resources are less limited. Interspecific comparisons generally support these predictions. We evaluated this hypothesis at the intraspecific level, for two sapling populations of the canopy tree Dialium guianense (Caesalpiniaceae) at the Lacandona rain forest in southeast Mexico. The two populations occur in nearby sites, adjacent to the Chajul Field Station, under the same climatic conditions and within the same vegetation type, but with considerable differences in soil quality. The Floodplain site, under the influence of the Lacantún River, has favorable conditions for plant growth, in terms of nutrient and water availability, whereas the Hills site, given its location and soil characteristics, provides more restricted conditions for plant growth. Plants in the Floodplain site had higher growth and lower concentration of phenolic compounds than plants in the Hills (a two-fold difference in leaf area production, 1.3 less total phenolics). These differences were correlated with differences in herbivore attack, as saplings from the Hills, with a higher defensive potential, had lower average levels of herbivory than Floodplain plants (3.86% ± 0.80 vs. 7.75% ± 1.43 of leaf area loss). The relationship between the concentration of phenolic compounds and leaf quality for herbivores was consistent with preference assays carried out under laboratory conditions using two species of generalist herbivores, the army worm Spodoptera fugiperda and the native katydid Orophus sp. In 63.8 and 81.3% of the cases, third-instar larvae of S. fugiperda and adults of Orophus, respectively, preferred leaflets from the Floodplain plants population. Moreover, on average, the adults of Orophus consumed 2.9 times more leaf area from the Floodplain than from the Hills. In addition, a reciprocal transplant experiment indicated that phenotypic plasticity is likely to be the mechanism by which the plants expressed differential growth and traits affecting herbivory levels. In this experiment, growth and herbivory levels were 1.6 and 1.7 times higher, respectively, in plants transplanted into a Floodplain experimental plot than those in a Hills plot. This work contributes to our understanding of how edaphic heterogeneity can determine intraspecific variation in the relationship of plants with their herbivores and evaluates the underlying mechanisms promoting such influence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The ‘evolution of increased competitive ability’ (EICA) hypothesis is an extension of optimal defense theory and predicts that reduced pressure from insect herbivores in the introduced range results in evolution of reduced defenses in invading plant populations, allowing greater allocation of resources to competitive traits such as growth rate and reproduction. The EICA hypothesis considered levels of defensive chemistry to be fixed within a particular genotype. In this paper, we propose that if herbivory is reduced in the introduced range, but chemical defenses are inducible in response to herbivory, evolution of reduced defenses and any associated increase competitive ability should not occur. Rather, mean induced and constitutive levels of induced defenses should be similar in introduced and native ranges, but the variance about mean induced levels should be greater in the introduced range. This is predicted because induced levels will occur less frequently in the introduced range where herbivory is reduced, thereby insulating these levels from the stabilizing selection expected in the native range where induced levels occur more frequently. We conducted a preliminary study to examine this by comparing constitutive and induced concentrations of total pyrrolizidine alkaloids (PAs) from native (European) and introduced (western North America) populations of Cynoglossum officinale L. The mean constitutive and induced concentrations of PAs did not differ between continents, but the variability of the induced concentrations was significantly greater for plants from the introduced range. Although our study with C. officinale is provisional due to a small sample size, it supports our predictions for evolution of inducible defenses in introduced ranges where herbivore pressure is reduced. Most chemical defenses in plants have been found to be inducible, so similar patterns may occur widely. If so, this weakens the generality of EICA’s predictions concerning chemical defenses. The effects of inducible defenses should be considered in cross-continent comparisons of other invasive plant species.  相似文献   

12.
Meyer G  Clare R  Weber E 《Oecologia》2005,144(2):299-307
The mechanisms that allow introduced plants to become invasive are poorly understood. Here, we present a test of the evolution of increased competitive ability hypothesis, which holds that because specialized natural enemies may be absent from the introduced range, exotic plants may evolve to invest less in anti-herbivore defenses and thereby gain a competitive advantage over native plants. We grew Solidago gigantea plants derived from both the native range (North America) and the invasive range (Europe) in a common garden in the native range for 2 years. Half the plants were treated with insecticide to protect them from insect herbivores and the other half were exposed to insects that colonized the garden from nearby fields. Insect herbivore biomass was significantly higher on European plants than US plants in the first year but not the second. European plants were more heavily attacked by pathogens in both years of the study. When exposed to insect herbivores, US plants produced more seed than European plants, but when plants were protected from herbivores, seed production was equivalent between US plants and European plants. The presence of insect herbivores suppressed seed production of European plants much more than that of US plants, even though the level of herbivory experienced by European and US plants was similar in the second year, suggesting that the ability to tolerate herbivory was diminished in European plants. These results partially support the EICA hypothesis: plants from the introduced range were more susceptible to some natural enemies and benefited more from insect removal than plants from the native range. The prediction that European plants would perform better than US plants in the absence of insect herbivores was not supported. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
In the absence of coevolved natural enemies, plants are expected to experience selection away from costly herbivore defenses toward growth and reproduction [evolution of increased competitive ability hypothesis (EICA)], yet no one has demonstrated EICA for an indirect defense trait. Likewise, we have little understanding of how constitutive and induced levels of defense vary among native and invasive plant populations. We conducted a greenhouse experiment in the introduced range to test whether invasive populations have reduced constitutive and induced investment in an indirect defense trait, extrafloral nectar (EFN) production, compared to native populations of Chinese tallow tree, Triadica sebifera, through an experimental leaf damage treatment. Overall, native populations invested more in indirect defense: Native populations had a greater number (+16?%) and percentage of leaves producing EFN (35 vs. 28?%), produced more EFN (63?% greater volume), and produced more sugar (+33?%) compared to invasive populations, independent of damage treatment. Of these traits, number of leaves producing EFN and volume of EFN exhibited a trade-off between constitutive and induced investment but these did not depend on plant origin. Our results are the first to support the EICA hypothesis for an indirect defense trait. This suggests that tri-trophic interactions such as indirect defense are under similar selection as direct defense traits within introduced populations. Despite reduced investment in EFN production, invasive populations still retain the ability to produce EFN, which may enable invasive plants to defend against herbivores in the introduced range.  相似文献   

14.
The invasive shrub Buddleja davidii performs better in its introduced range   总被引:1,自引:1,他引:0  
It is commonly assumed that invasive plants grow more vigorously in their introduced than in their native range, which is then attributed to release from natural enemies or to microevolutionary changes, or both. However, few studies have tested this assumption by comparing the performance of invasive species in their native vs. introduced ranges. Here, we studied abundance, growth, reproduction, and herbivory in 10 native Chinese and 10 invasive German populations of the invasive shrub Buddleja davidii (Scrophulariaceae; butterfly bush). We found strong evidence for increased plant vigour in the introduced range: plants in invasive populations were significantly taller and had thicker stems, larger inflorescences, and heavier seeds than plants in native populations. These differences in plant performance could not be explained by a more benign climate in the introduced range. Since leaf herbivory was substantially reduced in invasive populations, our data rather suggest that escape from natural enemies, associated with increased plant growth and reproduction, contributes to the invasion success of B. davidii in Central Europe.  相似文献   

15.
The evolution of redirecting resources from plant defense to growth or reproduction may explain why some exotic species are successful invaders in new environments. For example, the evolution of increased competitive ability hypothesis posits that escape from herbivores by invasive plants results in the selection of more vigorous genotypes that reduce their allocation of resources to defense. In addition, understanding the defense strategy of an invasive plant may help forecast the likely impact of herbivory. We tested the prediction of reduced defense (i.e., resistance) in Genista monspessulana, measured indirectly as the performance of a specialist psyllid herbivore, by comparing five native and introduced plant populations. We also examined the ability of G. monspessulana to compensate for herbivory in the presence and the absence of psyllids for a single plant population from the native and introduced regions. Plant origin (native or introduced) did not influence the psyllid’s abundance and population growth rate, suggesting no change in resistance to herbivory for introduced plants. Similarly, we found no overall difference in plant performance between individuals in the presence and the absence of psyllid herbivory, suggesting that G. monspessulana was able to fully compensate for herbivory. Damaged plants compensated by changing the pattern of branching, which also resulted in greater dry leaf biomass. We conclude that evolution of reduced defenses does not explain the success of G. monspessulana as an invader and that compensation for herbivory may limit the efficacy of the psyllid as a biological control agent.  相似文献   

16.
Several hypotheses have been proposed to explain the defense strategies of invasive plants in new ranges. In the absence of specialist herbivores, it is believed that invasive plants may allocate fewer resources to resistance and more to growth and reproduction, thus increasing tolerance to damage in the invasive genotypes. In order to test these predictions, we compared both performance (growth and reproduction) and defense strategies (tolerance and resistance) of two populations of Taraxacum officinale, one from the native range in the French Alps, and one from the introduced range in the Chilean Andes. Individuals from the introduced population demonstrated improved reproductive traits relative to those from the native population, although there was no discernible difference in biomass accumulation. Additionally, reduced tolerance was evident in the case of the former; whereas fitness traits of native plants were unaffected by damage, invasive plants reduced growth and seed output by 25 and 30% respectively following damage treatments. Increases in levels of phenols and anthocyanins, produced as a defense response to herbivory, were observed in introduced plants. Our results suggest that reallocation of resources to reproduction may be an important factor favouring invasive success of T. officinale in Chile, and that a higher investment in chemical resistance traits in this population may also be a factor in this regard.  相似文献   

17.
The success of invasive plants has been attributed to their escape from natural enemies and subsequent evolutionary change in allocation from defence to growth and reproduction. In common garden experiments with Senecio jacobaea, a noxious invasive weed almost worldwide, the invasive populations from North America, Australia, and New Zealand did indeed allocate more resources to vegetative and reproductive biomass. However, invasive plants did not show a complete change in allocation from defence to growth and reproduction. Protection against generalist herbivores increased in invasive populations and pyrrolizidine alkaloids, their main anti‐herbivore compounds, did not decline in invasive populations but were higher overall compared with native populations. In contrast, invasive plants lost additional protection against specialist herbivores adapted to pyrrolizidine alkaloids. Hence, the absence of specialist herbivores in invasive populations resulted in the evolution of lower protection against specialists and increased growth and reproduction, but also allowed a shift towards higher protection against generalist herbivores.  相似文献   

18.
Tolerance and resistance are defence strategies evolved by plants to cope with damage due to herbivores. The introduction of exotic species to a new biogeographical range may alter the plant–herbivore interactions and induce selection pressures for new plant defence strategies with a modified resource allocation. To detect evolution in tolerance to herbivory in common ragweed, we compared 3 native (North America) and 3 introduced (France) populations, grown in a common garden environment. We explored the effect of leaf herbivory on plant vegetative and reproductive traits. Plants were defoliated by hand, simulating different degrees of insect grazing by removing 0%, 50% or 90% of each leaf blade. Total and shoot dry biomasses were not affected by increasing defoliation, whereas root dry biomass and root:shoot ratio decreased significantly for native and introduced populations. Furthermore, defoliation treatments did not affect any of the plant reproductive traits measured. Hence, common ragweed displayed an efficient reallocation of resources in shoot biomass at the expense of roots following defoliation, which allows the species to tolerate herbivory without obvious costs for fitness. We did not detect any difference in herbivory tolerance between introduced and native populations, but significant differences were found in reproduction with invasive populations producing more seeds than native populations. As a result, tolerance to herbivory has been maintained in the introduced plant populations. We discuss some implications of these preliminary results for biological control strategies dedicated to common ragweed.  相似文献   

19.
Tolerance, the degree to which plant fitness is affected by herbivory, is associated with invasiveness and biological control of introduced plant species. It is important to know the evolutionary changes in tolerance of invasive species after introduction in order to understand the mechanisms of biological invasions and assess the feasibility of biological control. While many studies have explored the evolutionary changes in resistance of invasive species, little has been done to address tolerance. We hypothesized that compared with plants from native populations, plants from invasive populations may increase growth and decrease tolerance to herbivory in response to enemy release in introduced ranges. To test this hypothesis, we compared the differences in growth and tolerance to simulated herbivory between plants from invasive and native populations of Chromolaena odorata, a noxious invader of the tropics and subtropics, at two nutrient levels. Surprisingly, flower number, total biomass (except at high nutrient), and relative increase in height were not significantly different between ranges. Also, plants from invasive populations did not decrease tolerance to herbivory at both nutrient levels. The invader from both ranges compensated fully in reproduction after 50?% of total leaf area had been damaged, and achieved substantial regrowth after complete shoot damage. This strong tolerance to damage was associated with increased resource allocation to reproductive structures and with mobilization of storage reserves in roots. The innately strong tolerance may facilitate invasion success of C. odorata and decrease the efficacy of leaf-feeding biocontrol agents. Our study highlights the need for further research on biogeographical differences in tolerance and their role in the invasiveness of exotic plants and biological control.  相似文献   

20.
If invasive plants are released from natural enemies in their introduced range, they may evolve decreased allocation to defense and increased growth, as predicted by the evolution of increased competitive ability (EICA) hypothesis. A field experiment using the invasive tree Melaleuca quinquenervia was conducted to test this hypothesis. Seeds were collected from 120 maternal trees: 60 in Florida (introduced range) and 60 in Australia (home range). Plants grown from these seeds were either subjected to herbivory by two insects from Australia that have recently been released as biological control agents or protected from herbivores using insecticides. Genotypes from the introduced range were initially more attractive to herbivores than genotypes from the home range, supporting EICA. However, genotypes from the introduced and home range did not differ in resistance to insects or in competitive ability, which does not support EICA. Plants from the introduced range had a lower leaf hair density, lower leaf: stem mass ratio, and a higher ratio of nerolidol: viridifloral chemotypes compared to plants from the native range. Plants with an intermediate density of leaf hairs and with high specific leaf area were more susceptible to herbivory damage, but there were no effects of leaf toughness or chemotype on presence of and damage by insects. Herbivory had a negative impact on performance of Melaleuca. Other than an initial preference by insects for introduced genotypes, there was no evidence for the evolution of decreased defense or increased competitive ability, as predicted by the EICA hypothesis. It does not appear from this study that the EICA hypothesis explains patterns of recent trait evolution in Melaleuca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号