首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of species to invade new habitats is often limited by various biotic and physical factors or interactions between the two. Invasive ants, frequently associated with human activities, flourish in disturbed urban and agricultural environments. However, their ability to invade and establish in natural habitats is more variable. This is particularly so for the invasive Argentine ant (Linepithema humile). While biotic resistance and low soil moisture limits their invasion of natural habitats in some instances, the effect of food availability has been poorly explored. We conducted field experiments to determine if resource availability limits the spread and persistence of Argentine ants in remnant natural forest in North Carolina. Replicated transects paired with and without sucrose solution feeding stations were run from invaded urban edges into forest remnants and compared over time using baits and direct counts at feeding stations. Repeated under different timing regimes in 2006 and 2007, access to sucrose increased local Argentine ant abundances (1.6–2.5 fold) and facilitated their progression into the forest up to 73 ± 21% of 50-m transects. Resource removal caused an expected decrease in Argentine ant densities in 2006, in conjunction with their retreat to the urban/forest boundary. However, in 2007, Argentine ant numbers unexpectedly continued to increase in the absence of sugar stations, possibly through access to alternative resources or conditions not available the previous year such as honeydew-excreting Hemiptera. Our results showed that supplementing carbohydrate supply facilitates invasion of natural habitat by Argentine ants. This is particularly evident where Argentine ants continued to thrive following sugar station removal.  相似文献   

2.
Question: What are the changes associated with the recent invasion by the non‐native legume, Cytisus scoparius? Location: Subalpine vegetation (1500 m a.s.l.) in Australia. Methods: We used multivariate techniques and regression analyses to assess vegetation and environmental changes across six study sites. Vegetation and environmental variables were investigated at three different stages of invasion: (1) recent invasion (8–10 yr), (2) mature invasion (15–16 yr) and (3) long‐term invasion (25 yr). Results: Substantial changes in floristic composition and species richness were evident after 15 yr and these changes became more pronounced after 25 yr. Changes due to invasion were associated with a dramatic loss of native species or a reduction in their abundance. No ‘new species’ were evident under invaded stands. Forbs were most affected by the establishment of C. scoparius, although all growth forms responded negatively. Dense canopy shading and an increasingly dense, homogeneous litter layer in the understorey as a result of C. scoparius were strong environmental drivers of vegetation change. Greenhouse studies confirmed the importance of these processes on the germination and growth of two native species. Conclusions: This study highlights the potential for C. scoparius to alter both vegetation and environmental processes in the subalpine region.  相似文献   

3.
The effects of competitive suppression by vines on the non-vine plant community have received little attention in temperate habitats. This study investigated the impact vines have on their herbaceous hosts in a wetland community at two soil fertility levels. Plots in an oligohaline marsh were treated in a 2 × 2 factorial design with vine removal and fertilization over two growing seasons. There was no significant interaction between removal and fertilization treatments on any of the measured variables. Vine removal initially caused an increase in light penetration through the canopy, but by the end of the study, plots with vines removed had less light due to a 25% increase in biomass by the plants released from competition with vines. For plots with vines removed, species richness was higher during a brief period in the spring of the second year, but by the end of the study, richness in removal plots decreased relative to controls. Fertilization caused a 40% increase in biomass overall, although only two species, Sagittaria lancifolia L. and Polygonum punctatum Ell., showed dramatic increases. Despite fertilization causing a 40% decrease in light penetration to the ground, no change in species richness was observed. Overall, these results show that vine cover in this wetland suppresses non-vine species and reduces community biomass. Removal of vines increased biomass of non-vine dominants but resulted in only an ephemeral change in species richness. Fertilization did not increase the effects of vines on the non-vine community. Received: 14 November 1996 / Accepted: 10 June 1997  相似文献   

4.
The transport and establishment of non-indigenous species in coastal marine environments are increasing worldwide, yet few studies have experimentally addressed the interactions between potentially dominant non-native species and native organisms. We studied the effects of the introduced mussel Musculista senhousia on leaf and rhizome growth and shoot density of eelgrass Zostera marina in San Diego Bay, California. We added M. senhousia over a natural range in biomass (0–1200 g dry mass/m2) to eelgrass in transplanted and established beds. The effects of the non-indigenous mussel varied from facilitation to interference depending on time, the abundance of M. senhousia, and the response variable considered. Consistent results were that mussel additions linearly inhibited eelgrass rhizome elongation rates. With 800 g dry mass/m2 of M. senhousia, eelgrass rhizomes grew 40% less than controls in two eelgrass transplantations and in one established eelgrass bed. These results indicate that M. senhousia, could both impair the success of transplantations of eelgrass, which spread vegetatively by rhizomes, and the spread of established Z. marina beds to areas inhabited by M. senhousia. Although effects on leaf growth were not always significant, in August in both eelgrass transplantations and established meadows leaf growth was fertilized by mussels, and showed a saturation-type relationship to sediment ammonium concentrations. Ammonium concentrations and sediment organic content were linear functions of mussel biomass. We found only small, non-consistent effects of M. senhousia on shoot density of eelgrass over 6-month periods. In established eelgrass beds, but not in transplanted eelgrass patches (≈0.8 m in diameter), added mussels suffered large declines. Hence, eelgrass is likely to be affected by M. senhousia primarily where Z. marina beds are patchy and sparse. Our study has management and conservation implications for eelgrass because many beds are already seriously degraded and limited in southern California where the mussel is very abundant. Received: 31 May 1997 / Accepted: 4 September 1997  相似文献   

5.
Aims To determine how changes in land use, climate and shrub cover affect the invasion dynamics of native (Pinus sylvestris L.) and introduced (Pinus nigra Arn. subsp. nigra) pines in grasslands. To analyse how these factors interact and affect seedling recruitment, a bottleneck in the lifecycle of many trees. Such information is required to manage the dynamics of these species. Location Grands Causses, calcareous plateaus (Southern France). Methods We used both published and unpublished demographic and dispersal data to assess population growth and invasion speed of invading pines. A demographic and spatially explicit model, which included density dependence and stochasticity in dispersal, demography and environment, was run for different scenarios of sheep grazing pressure (nil, extensive or intensive), shrub cover (0, 10 or 20%) and drought frequency (past‐to‐present or future). For each scenario, population growth rate, invasion speed and elasticity of invasion speed to each demographic and dispersal parameter were computed. Results Grazing was the main factor for limiting invasion speed. Shrub cover reduced tree spread under nil or extensive grazing pressure, but increased it under intensive grazing pressure. Although dry years led to nil seedling establishment rates, an increase in their frequency had surprisingly few effects on pine invasion speed. This last result remained unchanged when very dry years, inducing seedling, but also sapling mortality were introduced. In most environmental conditions, population growth rate and invasion speed were higher for the introduced than for the native pine. Elasticity analysis highlighted the importance of demographic parameters on invasion speed, notably adult and sapling survival. Main conclusion Tree invasion speed may rely at least as much on human activities, like sheep grazing, tree cutting and non‐native trees introduction, as on changes in climate factors. Therefore, human activities need to be explicitly taken into account in the prediction and management of tree dynamics.  相似文献   

6.
物种丰富度和生态系统功能间的关系是近年来生物多样性研究的中心问题,其中群落抗杂草入侵是其功能的重要表现形式。本文利用青藏高原东缘地区3种野生优良牧草:垂穗披碱草(Elymus nutans)、中华羊茅(Festuca sinensis)和羊茅(F. ovina),构建人工草地群落,探讨了物种丰富度与杂草入侵能力间的相互关系及其潜在的作用机理。结果表明:随着群落中物种丰富度的增加,入侵杂草的物种数、秧苗数和生物量均表现为显著下降趋势(P<0.05);杂草的物种数、秧苗数和生物量间存在极显著的正相关(P<0.01);群落的物种丰富度与入侵杂草间的负相关关系可能是选择效应和补偿效应共同作用的结果;2004—2007年,群落中入侵杂草的物种数和生物量有增加趋势,而秧苗数的变化趋势不明显。  相似文献   

7.
Halting biological invasions and rewilding extirpated native fauna are conservation interventions to bolster biodiversity, species interactions, and ecosystems. These actions are often considered separately and the potential for reintroduced wildlife to facilitate invasive plants has been largely overlooked. Here, we investigated the role of Singapore's recolonizing native wild pigs (Sus scrofa) in facilitating an invasive weed Miconia crenata into tropical rainforests, which are normally highly resistant to invasion. We conducted line-transect surveys in 11 Singaporean rain forests and used generalized linear mixed models to consider the contribution of pigs' soil disturbances, human forest paths, and other environmental covariates, on the density of M. crenata. We found that M. crenata was more abundant at forest edges and invasion into forest interior was facilitated by pigs, paths, and canopy gaps, but that these effects were all additive, not synergistic (i.e., not multiplicative). These results highlight how modern invasions are driven by multiple disturbances as well as propagule pressure (e.g., urban birds dispersing seeds at forest edges where they establish in pig soil disturbances). Singapore's extensive native forest restoration efforts may have provided plentiful edge and secondary forests that are well suited to pigs and M. crenata, which in turn undermine the aims of fostering later-successional native plant communities. To prevent negative externalities, we suggest that plant restoration and rewilding projects consider the potential role of wildlife in facilitating non-native plants, and couple these actions with preliminary screening of unintended consequences and continued monitoring, as well as limiting human-mediated weed invasion to minimize propagule sources.  相似文献   

8.
Questions: 1. What are the distribution and habitat associations of non‐native (neophyte) species in riparian zones? 2. Are there significant differences, in terms of plant species diversity, composition, habitat condition and species attributes, between plant communities where non‐natives are present or abundant and those where non‐natives are absent or infrequent? 3. Are the observed differences generic to non‐natives or do individual non‐native species differ in their vegetation associations? Location: West Midlands Conurbation (WMC), UK. Methods: 56 sites were located randomly on four rivers across the WMC. Ten 2 m × 2 m quadrats were placed within 15 m of the river to sample vegetation within the floodplain at each site. All vascular plants were recorded along with site information such as surrounding land use and habitat types. Results: Non‐native species were found in many vegetation types and on all rivers in the WMC. There were higher numbers of non‐natives on more degraded, human‐modified rivers. More non‐native species were found in woodland, scrub and tall herb habitats than in grasslands. We distinguish two types of communities with non‐natives. In communities colonized following disturbance, in comparison to quadrats containing no non‐native species, those with non‐natives had higher species diversity and more forbs, annuals and shortlived monocarpic perennials. Native species in quadrats containing non‐natives were characteristic of conditions of higher fertility and pH, had a larger specific leaf area and were less stress tolerant or competitive. In later successional communities dominated by particular non‐natives, native diversity declined with increasing cover of non‐natives. Associated native species were characteristic of low light conditions. Conclusions: Communities containing non‐natives can be associated with particular types of native species. Extrinsic factors (disturbance, eutrophication) affected both native and non‐native species. In disturbed riparian habitats the key determinant of diversity is dominance by competitive invasive species regardless of their native or non‐native origin.  相似文献   

9.
Both weed science and plant invasion science deal with noxious plants. Yet, they have historically developed as two distinct research areas in Europe, with different target species, approaches and management aims, as well as with diverging institutions and researchers involved. We argue that the strengths of these two disciplines can be highly complementary in implementing management strategies and outline how synergies were created in an international, multidisciplinary project to develop efficient and sustainable management of common ragweed, Ambrosia artemisiifolia. Because this species has severe impacts on human health and is also a crop weed in large parts of Europe, common ragweed is one of the economically most important plant invaders in Europe. Our multidisciplinary approach combining expertise from weed science and plant invasion science allowed us (i) to develop a comprehensive plant demographic model to evaluate and compare management tools, such as optimal cutting regimes and biological control for different regions and habitat types, and (ii) to assess benefits and risks of biological control. It further (iii) showed ways to reconcile different stakeholder interests and management objectives (health versus crop yield), and (iv) led to an economic model to assess invader impact across actors and domains, and effectiveness of control measures. (v) It also led to design and implement management strategies in collaboration with the various stakeholder groups affected by noxious weeds, created training opportunities for early stage researchers in the sustainable management of noxious plants, and actively promoted improved decision making regarding the use of exotic biocontrol agents at the national and European level. We critically discuss our achievements and limitations, and list and discuss other potential Old World (Afro-Eurasian) target species that could benefit from applying such an integrative approach, as typical invasive alien plants are increasingly reported from crop fields and native crop weeds are invading adjacent non-crop land, thereby forming new source populations for further spread.  相似文献   

10.
Species invasion is a complex, multifactor process. To encapsulate this complexity into an intuitively appealing, simple, and straightforward manner, we present an organizational framework in the form of an invasion triangle. The invasion triangle is an adaptation of the disease triangle used by plant pathologists to help envision and evaluate interactions among a host, a pathogen, and an environment. Our modification of this framework for invasive species incorporates the major processes that result in invasion as the three sides of the triangle: (1) attributes of the potential invader; (2) biotic characteristics of a potentially invaded site; and (3) environmental conditions of the site. The invasion triangle also includes the impact of external influences on each side of the triangle, such as climate and land use change. This paper introduces the invasion triangle, discusses how accepted invasion hypotheses are integrated in this framework, describes how the invasion triangle can be used to focus research and management, and provides examples of application. The framework provided by the invasion triangle is easy to use by both researchers and managers and also applicable at any level of data intensity, from expert opinion to highly controlled experiments. The organizational framework provided by the invasion triangle is beneficial for understanding and predicting why species are invasive in specific environments, for identifying knowledge gaps, for facilitating communication, and for directing management in regard to invasive species.  相似文献   

11.
As biological invasions increasingly affect natural systems, the need for methods that can quantify the processes responsible for invasion success has increased. Further, methods should be geared to the formulation of management strategies. Demographic analyses are designed to explore the causes and properties of population change. Matrix population models, a commonly used technique for demographic analysis, have been applied to the analysis of stage-structured populations. However, most commonly, analyses have focused on long-term outcomes dynamics (ergodic dynamics). The methods available for analysis of matrix population models have recently been extended to facilitate analysis of the transient dynamics most important to invasion analysis. In this paper we analyze the transient population dynamics of three invasive shrubs and compare them to ergodic dynamics. Cytisus scoparius, Clidemia hirta, and Ardisia elliptica come from different parts of the world and are all now found in the United States of America. They also have published transition matrices that measure the probabilities that any one life-history stage will transition to another over an annual time step. These matrices have been estimated from multi-year data collected from plots in various environments. Our comparative study of transient and ergodic dynamics of invasive shrubs shows that, for all the considered shrub species, there was a clear difference between the sensitivities drawn from these two approaches. The transient sensitivities of earlier life-history transitions showed magnified importance relative to ergodic sensitivities. This was especially true of A. elliptica for which the stable population structure was most different from the starting structure analyzed in detail here. For other species, as stable population structures were heavily weighted towards early stages, the differences in the importance of early transitions transiently and ergodically were less dramatic. Late life transitions showed magnified importance in areas towards the center of the invasion or in older invasion areas. Finally, populations with shorter estimated generation times show greater transient sensitivity to early life-history stages; but the pattern was complex and varied according to species, and was also observed across other life-history transitions. Overall, the ambiguity and complexity of the results highlight the power of considering transient population dynamics for invading species, as well as the importance of specific biological and ecological knowledge of the invading species. Although there may be commonalities across invasions, important decisions on control or inference on population dynamics should treat invasions as individual, unique events.  相似文献   

12.
Abstract. Question: How do Coriaria arborea, an N‐fixing native shrub, and Buddleja davidii, a non‐N‐fixing exotic shrub, affect N:P stoichiometry in plants and soils during early stages of primary succession on a flood‐plain? Location: Kowhai River Valley, northeast South Island, New Zealand. Methods: We measured soil and foliar nutrient concentrations, light levels, plant community composition and the above‐ground biomass of Coriaria and Buddleja in four successional stages: open, young, vigorous and mature. Results: Coriaria occurred at low density but dominated above‐ground biomass by the vigorous stage. Buddleja occurred at 5.3 ± 1.0 stems/m2 in the young stage and reached a maximum biomass of 520–535 g.m‐2 during the young and vigorous stages. Mineral soil N increased with above‐ground Coriaria biomass (r2= 0.45), but did not vary with Buddleja biomass. In contrast, soil P increased with Buddleja biomass (r2= 0.35), but not with Coriaria biomass. In early successional stages, 70–80% of the species present were exotic, but this declined to about 15% by the mature stage. Exotic plant species richness declined with increasing Coriaria biomass, but no other measures of diversity varied with either Coriaria or Buddleja biomass. Conclusion: These results demonstrate that Buddleja dominates early succession and accumulates P whereas Coriaria dominates later succession and accumulates N. A key ecosystem effect of the invasive exotic Buddleja is alteration of soil N:P stoichiometry.  相似文献   

13.
Human activities have resulted in increased nitrogen deposition and atmospheric CO2 concentrations in the biosphere, potentially causing significant changes in many ecological processes. In addition to these ongoing perturbations of the abiotic environment, human-induced losses of biodiversity are also of major concern and may interact in important ways with biogeochemical perturbations to affect ecosystem structure and function. We have evaluated the effects of these perturbations on plant biomass stoichiometric composition (C:N:P ratios) within the framework of the BioCON experimental setup (biodiversity, CO2, N) conducted at the Cedar Creek Natural History Area, Minnesota. Here we present data for five plant species: Solidago rigida, Achillea millefolium, Amorpha canescens, Lespedeza capitata, and Lupinus perennis. We found significantly higher C:N and C:P ratios under elevated CO2 treatments, but species responded idiosyncratically to the treatment. Nitrogen addition decreased C:N ratios, but this response was greater in the ambient CO2 treatments than under elevated CO2. Higher plant species diversity generally lowered both C:N and C:P ratios. Importantly, increased diversity also led to a more modest increase in the C:N ratio with elevated CO2 levels. In addition, legumes exhibited lower C:N and higher C:P and N:P ratios than non-legumes, highlighting the effect of physiological characteristics defining plant functional types. These data suggest that atmospheric CO2 levels, N availability, and plant species diversity interact to affect both aboveground and belowground processes by altering plant elemental composition.  相似文献   

14.
The effect of herbivory and nutrient enrichment on the growth of invasive and native macroalgal species was simultaneously studied in two biogeographic regions: the Caribbean and Hawaii. Herbivores suppressed growth of invasive algae in their native (Caribbean) and invaded range (Hawaii), but despite similar levels of herbivore biomass, the intensity of herbivory was lower in Hawaii. Algal species with a circumtropical distribution did not show a similar effect of herbivores on their growth. Nutrient enrichment did not enhance growth of any algal species in either region. The reduction in herbivore intensity experienced by invasive algae in Hawaii rather than an escape from (native) herbivores provided invasive macroalgae with “enemy release” sensu the Enemy Release Hypothesis (ERH). Since native, Hawaiian herbivores still feed and even prefer invasive algae over native species, invasion scenario’s that involve predation (e.g. the ERH) could be falsely dismissed when invasive species are only studied in their invasive range. We therefore argue that escape from herbivores (i.e. enemy release) can only effectively be determined with additional information on the intensity of predation experienced by an invasive species in its native range.  相似文献   

15.
Aims: The stress‐gradient hypothesis (SGH) predicts how plant interactions change along environmental stress gradients. We tested the SGH in an aridity gradient, where support for the hypothesis and the specific shape of its response curve is controversial. Location: Almería, Cáceres and Coimbra, three sites in the Iberian Peninsula that encompass the most arid and wet habitats in the distribution range of a nurse shrub species –Retama sphaerocarpa L. (Boiss) – in Europe. Methods: We analysed the effect of Retama on its understorey plant community and measured the biomass and species richness beneath Retama and in gaps. We estimated the frequency (changes in species richness), importance and intensity of the Retama effects, and derived the severity–interaction relationship pattern, analysing how these interaction indices changed along this aridity gradient. Results and conclusions: The intensity and frequency of facilitation by Retama increased monotonically with increasing environmental severity, and the importance tended to have a similar pattern, overall supporting the SGH. Our data did not support predictions from recent revisions of the SGH, which may not apply to whole plant communities like those studied here or when interactions are highly asymmetrical. Facilitation by Retama influenced community composition and species richness to the point that a significant fraction of species found at the most arid end of the gradient were only able to survive beneath the nurse shrub, whereas some of these species were able to thrive in gaps at more mesic sites, highlighting the ecological relevance of facilitation by nurse species in mediterranean environments, especially in the driest sites.  相似文献   

16.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

17.
18.
19.
Background and Aims: While invasive species may escape from natural enemies in thenew range, the establishment of novel biotic interactions withspecies native to the invaded range can determine their success.Biological control of plant populations can be achieved by manipulationof a species' enemies in the invaded range. Interactions weretherefore investigated between a native parasitic plant andan invasive legume in Mediterranean-type woodlands of SouthAustralia. Methods: The effects of the native stem parasite, Cassytha pubescens,on the introduced host, Cytisus scoparius, and a co-occurringnative host, Leptospermum myrsinoides, were compared. The hypothesisthat the parasitic plant would have a greater impact on theintroduced host than the native host was tested. In a fieldstudy, photosynthesis, growth and survival of hosts and parasitewere examined. Key Results: As predicted, Cassytha had greater impacts on the introducedhost than the native host. Dead Cytisus were associated withdense Cassytha infections but mortality of Leptospermum wasnot correlated with parasite infection. Cassytha infection reducedthe photosynthetic rates of both hosts. Infected Cytisus showedslower recovery of photosystem II efficiency, lower transpirationrates and reduced photosynthetic biomass in comparison withuninfected plants. Parasite photosynthetic rates and growthrates were higher when growing on the introduced host Cytisus,than on Leptospermum. Conclusions: Infection by a native parasitic plant had strong negative effectson the physiology and above-ground biomass allocation of anintroduced species and was correlated with increased plant mortality.The greater impact of the parasite on the introduced host maybe due to either the greater resources that this host providesor increased resistance to infection by the native host. Thisdisparity of effects between introduced host and native hostindicates the potential for Cassytha to be exploited as a controltool.  相似文献   

20.
Hotter, longer, and more frequent global change‐type drought events may profoundly impact terrestrial ecosystems by triggering widespread vegetation mortality. However, severe drought is only one component of global change, and ecological effects of drought may be compounded by other drivers, such as anthropogenic nitrogen (N) deposition and nonnative plant invasion. Elevated N deposition, for example, may reduce drought tolerance through increased plant productivity, thereby contributing to drought‐induced mortality. High N availability also often favors invasive, nonnative plant species, and the loss of woody vegetation due to drought may create a window of opportunity for these invaders. We investigated the effects of multiple levels of simulated N deposition on a Mediterranean‐type shrubland plant community in southern California from 2011 to 2016, a period coinciding with an extreme, multiyear drought in the region. We hypothesized that N addition would increase native shrub productivity, but that this would increase susceptibility to drought and result in increased shrub loss over time. We also predicted that N addition would favor nonnatives, especially annual grasses, leading to higher biomass and cover of these species. Consistent with these hypotheses, we found that high N availability increased native shrub canopy loss and mortality, likely due to the higher productivity and leaf area and reduced water‐use efficiency we observed in shrubs subject to N addition. As native shrub cover declined, we also observed a concomitant increase in cover and biomass of nonnative annuals, particularly under high levels of experimental N deposition. Together, these results suggest that the impacts of extended drought on shrubland ecosystems may be more severe under elevated N deposition, potentially contributing to the widespread loss of native woody species and vegetation‐type conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号