首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
This study explored the possibility of using non-viral, plant-based gene sequences to create strong and constitutive expression vectors. Replacement histone H3 genes are highly and constitutively expressed in all plants. Sequences of the cloned alfalfa histone H3.2 gene MsH3g1 were tested. Constructs of the -glucuronidase (GUS) reporter gene were produced with H3.2 gene promoter and intron sequences. Their efficiency was compared with that of the commonly used strong 35S cauliflower mosaic virus promoter in transgenic tobacco plants. Combination of the H3.2 promoter and intron produced significantly higher GUS expression than the strong viral 35S promoter. Histochemical GUS analysis revealed a constitutive pattern of expression. Thus, alfalfa replacement H3 gene sequences can be used instead of viral promoters to drive heterologous gene expression in plants, avoiding perceived risks of viral sequences.  相似文献   

14.
BACKGROUND: The cytomegalovirus immediate early (CMV IE) promoter has been widely used for heterologous expression. Further enhancements of gene expression from this potent promoter may allow for the development of improved gene transfer strategies. We aimed to determine whether inclusion of the first exon (5' untranslated) and first intron of the CMV IE gene would increase heterologous transgene expression in primary target cells and to determine the sequences required for any observed increases. MATERIALS AND METHODS: Comparisons of reporter gene expression were made following transient transfection of vascular smooth muscle cells (VSMCs) with plasmids containing the first exon and intron from the CMV IE gene or deletional mutations. Comparisons were also made using a heterologous promoter (RSV). RESULTS: Gene expression from the CMV IE promoter was increased 5.7-fold in VSMC with the inclusion of the first exon and intron. Similar increases were seen with other target cells and from the heterologous RSV promoter. This increase was associated with an increase in steady-state mRNA. Deletion analyses demonstrated that the enhancement was dependent on the presence of the 5' portion of the first exon while deletion of large segments within the intron was associated with similar levels of expression compared with the parental plasmid. CONCLUSIONS: Inclusion of the first exon and intron from the CMV IE gene increases expression from the CMV IE promoter. This enhancement is seen with the heterologous RSV promoter and is associated with an increase in steady-state mRNA. Deletion analyses suggest that this enhancement is associated with inclusion of sequences within the 5' portion of the first exon and inclusion of an intron.  相似文献   

15.
16.
17.
18.
19.
20.
We have used the human globin locus control region (LCR) to assemble an expression system capable of high-level, integration position-independent expression of heterologous genes and cDNAs in murine erythroleukaemia (MEL) cells. The cDNAs are inserted between the human beta-globin promoter and the second intron of the human beta-globin gene, and this expression cassette is then placed downstream of the LCR and transfected into MEL cells. The cDNAs are expressed at levels similar to those of the murine beta-globin in the induced MEL cells. Heterologous genomic sequences can also be expressed at similar levels when linked to to the LCR and beta-globin promoter. In addition we demonstrate that, after induction of differentiation, MEL cells are capable of secreting heterologous proteins over a prolonged time period, making this system suitable for use in continuous production systems such as hollow fibre bioreactors. The utility of the LCR/MEL cell system is demonstrated by the expression of growth hormone at high levels (greater than 100 mg/l) 7 days after induction. Since the expression levels seen do not depend upon gene amplification and are independent of the integration position of the expression cassette, it is possible to obtain clones with stable high-level expression within 3-4 weeks after transfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号