首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.  相似文献   

2.
A direct comparison of [3H]thymidine incorporation with DNA synthesis was made by using an exponentially growing estuarine bacterial isolate and the naturally occurring bacterial populations in a eutrophic subtropical estuary and in oligotrophic offshore waters. Simultaneous measurements of [3H]thymidine incorporation into DNA, fluorometrically determined DNA content, and direct counts were made over time. DNA synthesis estimated from thymidine incorporation values was compared with fluorometrically determined changes in DNA content. Even after isotope dilution, nonspecific macromolecular labeling, and efficiency of DNA recovery were accounted for, [3H]thymidine incorporation consistently underestimated DNA synthesized by six- to eightfold. These results indicate that although the relationship of [3H]thymidine incorporation to DNA synthesis appears consistent, there are significant sources of thymine bases incorporated into DNA which cannot be accounted for by standard [3H]thymidine incorporation and isotope dilution assays.  相似文献   

3.
DNA replication in ultraviolet-irradiated human cells was examined by treatment of the extracted DNA with a single-strand specific endonuclease from Neurospora crassa. WI38 cells were uniformly labeled with 32Pi for two generations before irradiation and then labeled with [3H]thymidine after irradiation. The isolated DNA was sedimented in neutral sucrose gradients after incubation with the endonuclease. The endonuclease treatment had no effect on the sedimentation profiles of either [32P]DNA or [3H]DNA from unirradiated control cultures. The endonuclease treatment also did not significantly alter the profile of [32P]DNA from irradiated cultures but did introduce breaks in the 3H pulse-labeled DNA synthesized after irradiation. These results indicate that DNA synthesis after ultraviolet irradiation proceeds in such fashion that gaps are formed along the newly made strand, leaving regions of single strandness in template DNA. As replication proceeds these gaps disappear and 2 h after irradiation (100-250 ergs/mm2) they are barely detectable by the endonuclease assay.  相似文献   

4.
A direct comparison of [H]thymidine incorporation with DNA synthesis was made by using an exponentially growing estuarine bacterial isolate and the naturally occurring bacterial populations in a eutrophic subtropical estuary and in oligotrophic offshore waters. Simultaneous measurements of [H]thymidine incorporation into DNA, fluorometrically determined DNA content, and direct counts were made over time. DNA synthesis estimated from thymidine incorporation values was compared with fluorometrically determined changes in DNA content. Even after isotope dilution, nonspecific macromolecular labeling, and efficiency of DNA recovery were accounted for, [H]thymidine incorporation consistently underestimated DNA synthesized by six- to eightfold. These results indicate that although the relationship of [H]thymidine incorporation to DNA synthesis appears consistent, there are significant sources of thymine bases incorporated into DNA which cannot be accounted for by standard [H]thymidine incorporation and isotope dilution assays.  相似文献   

5.
Normal human fibroblasts treated with r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) yielded DNA polymerase alpha with elevated levels of activity, incorporated [3H]thymidine as a function of unscheduled DNA synthesis, and exhibited restoration of normal DNA-strand length as a function of unscheduled DNA synthesis. Lipoprotein-deficient fibroblasts treated with BPDE did not show elevated levels of DNA polymerase alpha activity, exhibited minimal [3H]thymidine incorporation, and had fragmented DNA after 24 h of repair in the absence of lipoprotein or phosphatidylinositol supplementation. When DNA polymerase beta activity was inhibited, cells with normal lipoprotein uptake exhibited [3H]thymidine incorporation into BPDE-damaged DNA but did not show an increase in DNA-strand length. DNA polymerase alpha activity and [3H]thymidine incorporation in lipoprotein-deficient fibroblasts increased to normal levels when the cells were permeabilized and low-density lipoproteins or phosphatidylinositol were introduced into the cells. DNA polymerase alpha isolated from normal human fibroblasts, but not from lipoprotein-deficient fibroblasts, showed increased specific activity after the cells were treated with BPDE. When BPDE-treated lipoprotein-deficient fibroblasts were permeabilized and 32P-ATP was introduced into the cells along with lipoproteins, 32P-labeled DNA polymerase alpha with significantly increased specific activity was isolated from the cells. These data suggest that treatment of human fibroblasts with BPDE initiates unscheduled DNA synthesis, as a function of DNA excision repair, which is correlated with increased activity of DNA polymerase alpha, and that increased DNA polymerase alpha activity may be correlated with phosphorylation of the enzyme in a reaction that is stimulated by low-density lipoprotein or by the lipoprotein component, phosphatidylinositol.  相似文献   

6.
Chinese hamster ovary cells labelled with [14C]thymidine were made permeable, incubated with various concentrations of the intercalating dye ethidium bromide, and centrifuged through neutral sucrose gradients. The gradient profiles of these cells were qualitatively similar to those obtained by centrifuging DNA from untreated, lysed permeable cells through gradients containing ethidium bromide. The sedimentation distance of DNA had a biphasic dependence on the concentration of ethidium bromide, suggesting that the dye altered the amount of DNA supercoiling in situ. The effect of ethidium bromide intercalation on incorporation of [3H]dTMP into acid-precipitable material in an in vitro DNA synthesis mixture was measured. The incorporation of [3H]dTMP was unaffected by less than 1 microgram/ml of ethidium bromide, enhanced up to two-fold by 1--10 microgram/ml, and inhibited by concentrations greater than 10 micrograms/ml. Alkaline sucrose gradient analysis revealed a higher percentage of small DNA fragments (6--20 S) in the cells treated with 2 micrograms/ml ethidium bromide than in control cells. These fragments attained parental size within the same time as the fragments in control cells. In cells treated with 2 micrograms/ml ethidium bromide, a significant fraction of newly synthesized DNA resulted from new starts, whereas in untreated cells practically none of the newly synthesized DNA resulted from new starts. These results suggest that relaxation of DNA supercoiled structures ahead of the replication fork generates spurious initiations of DNA synthesis and that in intact cells the rate of chain elongation is limited by supercoiled regions ahead of the growing point.  相似文献   

7.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

8.
Two alternative pathways for the synthesis of dGTP and its incorporation into DNA were studied: guanine (Gua)----GMP----GDP----dGDP----dGTP----DNA and dG----dGMP----dGDP----dGTP----DNA. To determine the contribution of each pathway to DNA synthesis independently of each other, [14C]Gua and [3H]dG tracer experiments were performed in a double-mutant S-49 mouse T-lymphoma cell line, dGuo-L, with purine nucleoside phosphorylase (EC 2.4.2.1)-deficiency and dGTP-feedback-resistant ribonucleotide reductase (RR, EC 1.17.4.1). In this cell line, dGTP pools can be selectively elevated by exogenous dG without affect RR and DNA synthesis. Although [3H]dG, but not [14C]Gua (up to 200 microM), readily expanded the cellular dGTP pool in a dose-dependent fashion in asynchronous cells, only a small fraction of the Gua flux into DNA was derived from [3H]dG, with the major fraction coming from [14C]Gua. H.p.l.c. analysis of G1- and partially enriched S-phase cells revealed that [3H]dGTP only accumulates in G1- but not in S-phase cells because of a rapid turnover of the dGTP pool during DNA synthesis. These results fail to provide evidence for cellular dGTP compartmentation and suggest that the pathway dG----dGMP----dGDP----dGTP alone has insufficient capacity to maintain DNA synthesis.  相似文献   

9.
An over 9 per cent increase was found in the protein content of callus and tumorous tissues of Nicotiana tabacum cultured for 39 days in a medium with an addition of hydroxyurea at a concentration of 100 mg/l. The inhibitory effect of this compound on incorporation of [14C]leucine was demonstrated, differences in the intensity of labelling between the nucleus and cytoplasm being present only in the tumorous tissue. These differences may indicate either disturbances in the migration of proteins from cytoplasm to nuclei or a specific blockade of histone synthesis. Hydroxyurea inhibits incorporation of [3H]arginine in callus tissues, whereas in tumorous tissues, apart from inhibition (at 75 and 100 mg HU/1), the stimulation of incorporation of this amino acid was observed (at 10 and 50 mg HU/1). The inhibitory effect of hydroxyurea on incorporation of [3H] lysine was demonstrated in both tissues examined, but it was stronger in the callus tissue. On the basis of the results concerning the influence of hydroxyurea on the content and synthesis of nucleic acids [4, 5] and the results of the present study it may be supposed that this compound induces unbalanced growth of cells of both tissues (inhibition of DNA and RNA synthesis and simultaneous accumulation of proteins), thus leading to their death.  相似文献   

10.
S L Dresler 《Biochemistry》1985,24(24):6861-6869
The effect of pretreatment with sodium butyrate on DNA excision repair was studied in intact and permeable confluent (i.e., growth-inhibited) diploid human fibroblasts. Exposure to 20 mM sodium butyrate for 48 h increased subsequent ultraviolet (UV)-induced [methyl-3H]thymidine incorporation by intact AG1518 fibroblasts by 1.8-fold and by intact IMR-90 fibroblasts by 1.2-1.3-fold. UV-induced incorporation of deoxy[5-3H]cytidine, deoxy[6-3H]cytidine, and deoxy[6-3H]uridine, however, showed lesser degrees of either stimulation or inhibition in butyrate-pretreated cells. This result suggested that measurements of butyrate's effect on DNA repair synthesis in intact cells are confounded by simultaneous changes in nucleotide metabolism. The effect of butyrate on excision repair was also studied in permeable human fibroblasts in which excision repair is dependent on exogenous nucleotides. Butyrate pretreatment stimulated UV-induced repair synthesis by 1.3-1.7-fold in permeable AG1518 cells and by 1.5-2-fold in permeable IMR-90 cells. This stimulation of repair synthesis was not due to changes in repair patch size or composition or in the efficiency of DNA damage production but rather resulted from a butyrate-induced increase in the rate of damage-specific incision of DNA. The increased rate of incision in butyrate-pretreated cells could be due either to increased levels of enzymes mediating steps in excision repair at or before incision or to alterations in chromatin structure making damage sites in DNA more accessible to repair enzymes.  相似文献   

11.
The influence of orotic acid on the incorporation of precursors into nucleic acids was studied in mice and rats and in isolated cells. In vivo, orotate levels were modified by two diets which are known to increase the rate of pyrimidine nucleotide synthesis in rat liver. Of these diets, a 1% orotate diet had greater inhibitory effects than an arginine-deficient diet on the incorporation of [3H]orotate into RNA of mouse kidney than mouse liver. This contrasted with the situation in the rat where there was a greater effect in the liver than the kidney. The situation in the rat was more readily interpreted than in the mouse in terms of previously established effects of these diets on ribonucleotide pool sizes. However, studies using [3H]adenosine as a precursor for incorporation into RNA suggested that even in the mouse the effects of orotate were on pool sizes rather than an inhibitory effect on RNA synthesis. The incorporation of [3H]thymidine into DNA was inhibited by orotate to a similar degree in cultured HTC hepatoma cells and a line of rat liver epithelial cells. An effect on DNA synthesis rather than solely on pool sizes was suggested by the observation that the pool size of dTTP was not increased by 5 mM orotate under conditions in which there was a four-fold increase in the level of UTP in HTC cells. An inhibitory effect of orotate on DNA synthesis was further supported by an observation of decreased incorporation of [3H]deoxyadenosine into DNA and a lower rate of cellular proliferation.  相似文献   

12.
Guinea pig peritoneal exudate macrophages actively incorporated [3H]thymidine into trichloroacetic acid-insoluble fraction in vitro. The incorporation of [3H]thymidine was almost completely inhibited by aphidicolin, an inhibitor of DNA polymerase alpha and an autoradiograph showed heavy labeling in nuclei of 15% of macrophage populations. These results indicate that the observed thymidine incorporation was due to a nuclear DNA synthesis. The [3H]thymidine incorporation was markedly suppressed when macrophages were activated by immunoadjuvants such as muramyl dipeptide (MDP) or bacterial lipopolysaccharide (LPS). The suppression of [3H]thymidine incorporation by MDP was neither due to the decrease in thymidine transport through the cell membrane, nor due to dilution by newly synthesized "cold" thymidine. An autoradiograph revealed that MDP markedly decreased the number of macrophages the nuclei of which were labeled by [3H]thymidine. These results suggest that the suppression of [3H]thymidine incorporation by the immunoadjuvants reflects a true inhibition of DNA synthesis. The inhibition of DNA synthesis by MDP was also observed in vivo. Further, it was strongly suggested that the inhibition was not caused by some mediators, such as prostaglandin E2, released from macrophages stimulated by the immunoadjuvants but caused by a direct triggering of the adjuvants at least at the early stage of activation. Cyclic AMP appears to be involved in the inhibitory reaction.  相似文献   

13.
In vitro incorporation of [Me-3H] thymidine and [5-3H] uridine into human platelets was demonstrated. Thymidine incorporation was inhibited by three specific inhibitors of DNA synthesis: hydroxyurea, cytosine arabinoside and daunomycin. The effect was dose-dependent. Uridine uptake by platelets was found to be inhibited by specific inhibitors of RNA synthesis such as actinomycin D, rifampicin and vincristine, the effect of actinomycin D being dose dependent. The drug also led to a time-dependent inhibition of protein synthesis when preincubated with platelets. The platelet RNA profile on polyacrylamide gel was demonstrated to be similar to that of embryonic mouse erythroblast RNA. Synthesis of all three fractions, 28 S, 18 S and 4 S, was inhibited by actinomycin D. These findings show that human platelets are capable of DNA and RNA synthesis, and that these activities play a role in controlling protein synthesis in these cells. Detectable amounts of DNA have been found in whole human platelets, and in isolated mitochondria derived from these cells. Isolated platelet mitochondria incorporated [3H] thymidine and [3H] uridine into their macromolecules. These activities were inhibited by daunomycin and by both rifampicin and actinomycin D, respectively. These results support the assumption that DNA and RNA synthesis found in intact cell preparations takes place most probably in platelet mitochondria.  相似文献   

14.
Synthesis of cell envelope proteins was studied in ethylenediaminetetraacetic acid-lysozyme spheroplasts of Escherichia coli ML30. The rate of incorporation of [3H]arginine into proteins in spheroplasts was about 30% of that of intact cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins synthesized in spheroplasts revealed the preferential synthesis of five polypeptides, one of which has been identified as the free form of murein lipoprotein. Lipoprotein synthesized in spheroplasts was found to be of same molecular size as that of mature lipoprotein. No prolipoprotein was observed even with a short pulse-labeling with [3H]arginine. On the other hand, significant accumulation of newly synthesized lipoprotein in the cytoplasmic membrane fraction of spheroplasts was observed. These results suggest that the processing of prolipoprotein occurs in the cytoplasmic membrane fraction of the cell envelope.  相似文献   

15.
The possibility that carcinogens may affect methylase-mediated methylation of replicating DNA was investigated. A system eminently suitable for this purpose is liver regenerating after partial hepatectomy, as one injection of dimethylnitrosamine (DMN) given during the ensuing period of increased DNA synthesis induces hepatocellular carcinoma. Methylation of DNA by DNA methylase normally occurs only in proportion to DNA synthesis. Therefore simultaneous measurements were made of synthesis (incorporation of [14C]adenine into DNA adenine, or of d[5-3H]cytidine into DNA cytosine), and of methylation (incorporation of [methyl-3H]methionine into 5-methylcytosine of DNA) in liver regenerating after partial hepatectomy. After treatment with DMN, the ratio of methylation: synthesis remained within the normal range. Methyl methanesulphonate (MMS), a compound which damages DNA in regenerating liver in a similar but not identical way to DMN and which does not induce tumors in liver even when given after partial hepatectomy, caused an increase in methylation in relation to synthesis. These experiments therefore do not support the view that altered DNA methylase activity is involved in carcinogenesis.  相似文献   

16.
Rates of nucleic acid synthesis have been used to examine microbiol growth in natural waters. These rates are calculated from the incorporation of [3H]adenine and [3H]thymidine for RNA and DNA syntheses, respectively. Several additional biochemical parameters must be measured or taken from the literature to estimate growth rates from the incorporation of the tritiated compounds. We propose a simple method of estimating a conversion factor which obviates measuring these biochemical parameters. The change in bacterial abundance and incorporation rates of [3H]thymidine was measured in samples from three environments. The incorporation of exogenous [3H]thymidine was closely coupled with growth and cell division as estimated from the increase in bacterial biomass. Analysis of the changes in incorporation rates and initial bacterial abundance yielded a conversion factor for calculating bacterial production rates from incorporation rates. Furthermore, the growth rate of only those bacteria incorporating the compound can be estimated. The data analysis and experimental design can be used to estimate the proportion of nondividing cells and to examine changes in cell volumes.  相似文献   

17.
The inhibitory effect of BV-araU on DNA synthesis in human embryonic lung cells infected with varicella-zoster virus (VZV) or herpes simplex virus type 1 (HSV-1) was compared with that of acyclovir. Cellular uptake of [3H]thymidine and its incorporation into DNA was markedly stimulated by the infection with VZV or HSV-1, suggesting that the incorporation was mainly due to viral DNA synthesis. DNA synthesis in VZV-infected cells was dose-dependently suppressed by BV-araU and acyclovir, although cellular uptake of [3H]thymidine decreased in cells treated with a high concentration of drugs for an extended time. DNA synthesis in HSV-1-infected cells was also markedly inhibited by both drugs in a dose-dependent manner, without affecting cellular uptake of [3H]thymidine. The concentration of drugs inhibiting DNA synthesis was well correlated to their in vitro anti-VZV and anti-HSV-1 activities. The inhibitory concentration of BV-araU for DNA synthesis in VZV-infected cells was one-thousandth of that of acyclovir. Our results suggest that the antiviral action of BV-araU against VZV and HSV-1 is based on the inhibition of DNA synthesis in herpesvirus-infected cells.  相似文献   

18.
We have investigated the effects of inhibiting protein synthesis on the overall rate of DNA synthesis and on the rate of replication fork movement in mammalian cells. In order to test the validity of using [3H]thymidine incorporation as a measure of the overall rate of DNA synthesis during inhibition of protein synthesis, we have directly measured the size and specific radioactivity of the cells' [3H]dTTP pool. In three different mammalian cell lines (mouse L, Chinese hamster ovary, and HeLa) nearly complete inhibition of protein synthesis has little effect on pool size (±26%) and even less effect on its specific radioactivity (±11%). Thus [3H]thymidine incorporation can be used to measure accurately changes in rate of DNA synthesis resulting from inhibition of protein synthesis.Using the assay of [3H]thymidine incorporation to measure rate of DNA synthesis, and the assay of [14C]leucine or [14C]valine incorporation to measure rate of protein synthesis, we have found that eight different methods of inhibiting protein synthesis (cycloheximide, puromycin, emetine, pactamycin, 2,4-dinitrophenol, the amino acid analogs canavanine and 5-methyl tryptophan, and a temperature-sensitive leucyl-transfer tRNA synthetase) all cause reduction in rate of DNA synthesis in mouse L, Chinese hamster ovary, or HeLa cells within two hours to a fairly constant plateau level which is approximately the same as the inhibited rate of protein synthesis.We have used DNA fiber autoradiography to measure accurately the rate of replication fork movement. The rate of movement is reduced at every replication fork within 15 minutes after inhibiting protein synthesis. For the first 30 to 60 minutes after inhibiting protein synthesis, the decline in rate of fork movement (measured by fiber autoradiography) satisfactorily accounts for the decline in rate of DNA synthesis (measured by [3H]thymidine incorporation). At longer times after inhibiting protein synthesis, inhibition of fork movement rate does not entirely account for inhibition of overall DNA synthesis. Indirect measurements by us and direct measurements suggest that the additional inhibition is the result of decline in the frequency of initiation of new replicons.  相似文献   

19.
Tumor necrosis factor stimulates DNA synthesis in the liver of intact rats   总被引:6,自引:0,他引:6  
TNF is cytotoxic to tumor cell lines but enhances growth of some nontransformed cells. Because animals administered TNF have an increase in liver size, we studied the [3H]thymidine incorporation into DNA in the liver of intact rats. A significant increase in [3H]thymidine incorporation is seen 20 hours following TNF administration and peaks at 24 hours. The lowest dose of TNF that increases DNA synthesis is 10 micrograms/200 g rat with a maximal increase occurring with 25 micrograms/200 g, considerably less than the dose required for maximally increasing plasma triglycerides. The increase in [3H]thymidine incorporation was shown to be due to an increase in DNA polymerase alpha activity (associated with the replication of DNA) rather than DNA polymerases beta (associated with DNA repair) plus gamma activity. These results indicate that TNF administration stimulates DNA replication in the liver of intact animals.  相似文献   

20.
The repair activity of a human transformed cell line, RSa, which was found to be highly sensitive to the lethal effects of 254 nm far-ultraviolet radiation, was compared with that of HeLa cells by evaluating the range of UV-induced incorporation of [methyl-3H]thymidine ([3H]dThd) or 5-[6-3H]bromodeoxyuridine ([3H]BrdUrd) into deoxyribonucleic acid. Direct scintillation counting was used for measuring the extent of unscheduled DNA synthesis (UDS) in UV-irradiated cells, which were treated with hydroxyurea or with arginine deprivation. More quantitative measurements were made by using the density labeling and equilibrium centrifugation method for assaying repair replication. All the amounts of UDS and repair replication in RSa cells were markedly below those in HeLa cells. The possible relationships of the low repair activity to abnormally high UV sensitivity in RSa cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号