首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two herpes simplex virus (HSV) glycoproteins E and I (gE and gI) form a heterooligomer which acts as an Fc receptor and also facilitates cell-to-cell spread of virus in epithelial tissues and between certain cultured cells. By contrast, gE-gI is not required for infection of cells by extracellular virus. HSV glycoproteins gD and gJ are encoded by neighboring genes, and gD is required for both virus entry into cells and cell-to-cell spread, whereas gJ has not been shown to influence these processes. Since HSV infects neurons and apparently spreads across synaptic junctions, it was of interest to determine whether gD, gE, gI and gJ are also important for interneuronal transfer of virus. We tested the roles of these glycoproteins in neuron-to-neuron transmission of HSV type 1 (HSV-1) by injecting mutant viruses unable to express these glycoproteins into the vitreous body of the rat eye. The spread of virus infection was measured in neuron-rich layers of the retina and in the major retinorecipient areas of the brain. Wild-type HSV-1 and a gJ- mutant spread rapidly between synaptically linked retinal neurons and efficiently infected major retinorecipient areas of the brain. gD mutants, derived from complementing cells, infected only a few neurons and did not spread in the retina or brain. Mutants unable to express gE or gI were markedly restricted in their ability to spread within the retina, produced 10-fold-less virus in the retina, and spread inefficiently to the brain. Furthermore, when compared with wild-type HSV-1, gE- and gI- mutants spread inefficiently from cell to cell in cultures of neurons derived from rat trigeminal ganglia. Together, our results suggest that the gE-gI heterooligomer is required for efficient neuron-to-neuron transmission through synaptically linked neuronal pathways.  相似文献   

2.
Naturally occurring transmissible spongiform encephalopathy (TSE) diseases such as bovine spongiform encephalopathy in cattle are probably transmitted by oral or other peripheral routes of infection. While prion protein (PrP) is required for susceptibility, the mechanism of spread of infection to the brain is not clear. Two prominent possibilities include hematogenous spread by leukocytes and neural spread by axonal transport. In the present experiments, following oral or intraperitoneal infection of transgenic mice with hamster scrapie strain 263K, hamster PrP expression in peripheral nerves was sufficient for successful infection of the brain, and cells of the spleen were not required either as a site of amplification or as transporters of infectivity. The role of tissue-specific PrP expression of foreign PrP in interference with scrapie infection was also studied in these transgenic mice. Peripheral expression of heterologous PrP completely protected the majority of mice from clinical disease after oral or intraperitoneal scrapie infection. Such extensive protection has not been seen in earlier studies on interference, and these results suggested that gene therapy with mutant PrP may be effective in preventing TSE diseases.  相似文献   

3.
Nonstructural protein σ1s is a critical determinant of hematogenous dissemination by type 1 reoviruses, which reach the central nervous system (CNS) by a strictly blood-borne route. However, it is not known whether σ1s contributes to neuropathogenesis of type 3 reoviruses, which disseminate by both vascular and neural pathways. Using isogenic type 3 viruses that vary only in σ1s expression, we observed that mice survived at a higher frequency following hind-limb inoculation with σ1s-null virus than when inoculated with wild-type virus. This finding suggests that σ1s is essential for reovirus virulence when inoculated at a site that requires systemic spread to cause disease. Wild-type and σ1s-null viruses produced comparable titers in the spinal cord, suggesting that σ1s is dispensable for invasion of the CNS. Although the two viruses ultimately achieved similar peak titers in the brain, loads of wild-type virus were substantially greater than those of the σ1s-null mutant at early times after inoculation. In contrast, wild-type virus produced substantially higher titers than the σ1s-null virus in peripheral organs to which reovirus spreads via the blood, including the heart, intestine, liver, and spleen. Concordantly, viral titers in the blood were higher following infection with wild-type virus than following infection with the σ1s-null mutant. These results suggest that differences in viral brain titers at early time points postinfection are due to limited virus delivery to the brain by hematogenous pathways. Transection of the sciatic nerve prior to hind-limb inoculation diminished viral spread to the spinal cord. However, wild-type virus retained the capacity to disseminate to the brain following sciatic nerve transection, indicating that wild-type reovirus can spread to the brain by the blood. Together, these results indicate that σ1s is not required for reovirus spread by neural mechanisms. Instead, σ1s mediates hematogenous dissemination within the infected host, which is required for full reovirus neurovirulence.  相似文献   

4.
To investigate the efficacy of intracerebral (IC) immunization in preventing viral spread in the brain, we immunized mice with inactivated rabies virus via the subcutaneous (SC) or IC route, followed by administration of a lethal dose of rabies virus (challenge virus standard strain), directly into the brains of immunized mice. Progressive paralytic neurological signs were observed in control and 75% of SC immunized mice, whereas only 20% of IC immunized mice exhibited symptoms. Neutralizing antibody titers in blood plasma were significantly elevated in SC and IC immunized mice, with the highest levels seen in IC immunized mice. Analysis of whole brain lysates revealed a strong induction of immunoglobulin in the brains of IC immunized mice that had virus neutralizing activity. Histopathological examination of brain tissue revealed mild encephalitis and disseminated viral antigen in control and SC immunized mice, but rare in IC immunized mice. These results suggest that IC immunization induces a preventive humoral immune response against intracerebrally inoculated rabies virus. Induction of neutralizing antibody in cerebrospinal fluid represents a putative therapeutic measure for the treatment of rabid animals and humans.  相似文献   

5.
While evidence exists supporting the potential for aerosol transmission of SARS-CoV-2, the infectious dose by inhalation remains unknown. In the present study, the probability of infection following inhalation of SARS-CoV-2 was dose-dependent in a nonhuman primate model of inhalational COVID-19. The median infectious dose, assessed by seroconversion, was 52 TCID50 (95% CI: 23–363 TCID50), and was significantly lower than the median dose for fever (256 TCID50, 95% CI: 102–603 TCID50), resulting in a group of animals that developed an immune response post-exposure but did not develop fever or other clinical signs of infection. In a subset of these animals, virus was detected in nasopharyngeal and/or oropharyngeal swabs, suggesting that infected animals without signs of disease are able to shed virus and may be infectious, which is consistent with reports of asymptomatic spread in human cases of COVID-19. These results suggest that differences in exposure dose may be a factor influencing disease presentation in humans, and reinforce the importance of public health measures that limit exposure dose, such as social distancing, masking, and increased ventilation. The dose-response data provided by this study are important to inform disease transmission and hazard modeling, and, ultimately, mitigation strategies. Additionally, these data will be useful to inform dose selection in future studies examining the efficacy of therapeutics and vaccines against inhalational COVID-19, and as a baseline in healthy, young adult animals for assessment of the importance of other factors, such as age, comorbidities, and viral variant, on the infectious dose and disease presentation.  相似文献   

6.
Chen CS  Yao YC  Lin SC  Lee YP  Wang YF  Wang JR  Liu CC  Lei HY  Yu CK 《Journal of virology》2007,81(17):8996-9003
Inoculation of enterovirus 71 (EV71) by the oral (p.o.), intramuscular (i.m.), or intracranial route resulted in brain infection, flaccid paralysis, pulmonary dysfunction, and death of 7-day-old mice. The lag time of disease progression indicated that neuroinvasion from the inoculation sites was a prerequisite for the development of the clinical signs. Although EV71 p.o. inoculation led to a persistent viremia and a transient increase in blood-brain barrier permeability at the early stage of the infection, only low levels of virus, which led to neither severe infection nor clinical illness, could be detected in the brain, suggesting that hematogenous transport might not represent a major transmission route. In the spinal cord, following both p.o. and hind limb i.m. inoculation, the virus first appeared and increased rapidly in the lower segments, especially at the anterior horn areas, and then spread to the upper segments and brain in the presence of viremia. A reverse pattern, with the virus being first detected in the upper segment, was observed when the virus was i.m. inoculated in the forelimb. Colchicine, a fast axonal transport inhibitor, but not sciatic nerve transection reduced EV71 neuroinvasion in a dose-dependent manner, indicating a neuronal transmission of the virus.  相似文献   

7.
Gamma-aminobutyric acid (GABA) plays a pivotal role in suppressing the origin and spread of seizure activity. Low occipital lobe GABA was associated with poor seizure control in patients with complex partial seizures. Vigabatrin irreversibly inhibits GABA-transaminase, raising brain and cerebrospinal fluid (CSF) GABA concentrations. The effect of vigabatrin on occipital lobe GABA concentrations was measured by in vivo nuclear magnetic-resonance spectroscopy. Using a single oral dose of vigabatrin, the rate of GABA synthesis in human brain was estimated at 17% of the Krebs cycle rate. As the daily dose of vigabatrin was increased to up to 3 g, the fractional elevation of brain GABA was similar to CSF increase. Doubling the daily dose from 3 to 6g failed to increase brain GABA further. Increased GABA concentrations appear to reduce GABA synthesis in humans as it does in animals. With traditional antiepileptic drugs, remission of the seizure disorder was associated with normal GABA levels. With vigabatrin, elevated CSF and brain GABA was associated with improved seizure control. Vigabatrin enhances the vesicular and nonvesicular release of GABA. The release of GABA during seizures may be mediated in part by transporter reversal that may serve as an important protective mechanism. During a seizure, this mechanism may be critical in stopping the seizure or preventing its spread.  相似文献   

8.
The pseudorabies virus (PRV) gE gene encodes a multifunctional membrane protein found in infected cell membranes and in the virion envelope. Deletion of the gE gene results in marked attenuation of the virus in almost every animal species tested that is permissive for PRV. A common inference is that gE mutants are less virulent because they have reduced ability to spread from cell to cell; e.g., gE mutants infect fewer cells and, accordingly, animals live longer. In this report, we demonstrate that this inference does not hold in a rat experimental model for virus invasion of the brain. We find that animals infected with gE mutants live longer despite extensive retrograde, transneuronal spread of virus in the rat brain. In this model of brain infection, virus is injected into the stomach musculature and virions spread to the brain in long axons of brain stem neurons that give rise to the tenth cranial nerve (the vagus). The infection then spreads from neuron to neuron in well-defined, and physically separated, areas of the brain involved in autonomic regulation of the viscera. We examined the progression of infection of five PRV strains in this circuitry: the wild-type PRV-Becker strain, the attenuated PRV-Bartha vaccine strain, and three gE mutants isogenic with the PRV-Becker strain. By 60 to 67 h after infection, all PRV-Becker-infected animals were dead. Analysis of Becker-infected rats killed prior to virus-induced death demonstrated that the virus had established an infection only in the primary vagal neurons connected directly to the stomach and synaptically linked neurons in the immediate vicinity of the caudal brain stem. There was little spread to other neurons in the vagus circuitry. In contrast, rats infected with PRV-Bartha or PRV-Becker gE mutants survived to at least 96 h and exhibited few overt signs of disease. Despite this long survival and the lack of symptoms, brains of animals sacrificed at this time revealed extensive transsynaptic infection not only of the brain stem but also of areas of the forebrain synaptically linked to neurons in the brain stem. This finding provides evidence that the gE protein plays a role in promoting symptoms of infection and death in animals that is independent of neuron-to-neuron spread during brain infection. When this early virulence function is not active, animals live longer, resulting in more extensive spread of virus in the brain.  相似文献   

9.
Phenotypically complemented pseudorabies virus gp50 null mutants are able to produce plaques on noncomplementing cell lines despite the fact that progeny virions are noninfectious. To determine whether gp50 null mutants and gp50+gp63 null mutants are also able to replicate and spread in animals, mice were infected subcutaneously or intraperitoneally. Surprisingly, both gp50 mutants and gp50+gp63 double mutants proved to be lethal for mice. In comparison with the wild-type virus, gp50 mutants were still highly virulent, whereas the virulence of gp50+gp63 mutants was significantly reduced. Severe signs of neurological disorders, notably pruritus, were apparent in animals infected with the wild-type virus or a gp50 mutant but were much less pronounced in animals infected with a gp50+gp63 or gp63 mutant. Immunohistochemical examination of infected animals showed that all viruses were able to reach, and replicate in, the brain. Examination of visceral organs of intraperitoneally infected animals showed that viral antigen was predominantly present in peripheral nerves, suggesting that the viruses reached the central nervous system by means of retrograde axonal transport. Infectious virus could not be recovered from the brains and organs of animals infected with gp50 or gp50+gp63 mutants, indicating that progeny virions produced in vivo are noninfectious. Virions that lacked gp50 in their envelopes, and a phenotypically complemented pseudorabies virus gII mutant (which is unable to produce plaques in tissue culture cells), proved to be nonvirulent for mice. Together, these results show that gp50 is required for the primary infection but not for subsequent replication and viral spread in vivo. These results furthermore indicate that transsynaptic transport of the virus is independent of gp50. Since progeny virions produced by gp50 mutants are noninfectious, they are unable to spread from one animal to another. Therefore, such mutants may be used for the development of a new generation of safer (carrier) vaccines.  相似文献   

10.
In patients with subacute sclerosing panencephalitis (SSPE), which is associated with persistent measles virus (MV) infection in the brain, little infectious virus can be recovered despite the presence of viral RNA and protein. Based on studies of brain tissue from SSPE patients and our work with MV-infected NSE-CD46(+) mice, which express the measles receptor CD46 on neurons, several lines of evidence suggest that the mechanism of viral spread in the central nervous system differs from that in nonneuronal cells. To examine this alternate mechanism of viral spread, as well as the basis for the loss of normal transmission mechanisms, infection and spread of MV Edmonston was evaluated in primary CD46(+) neurons from transgenic mice and differentiated human NT2 neurons. As expected, unlike that between fibroblasts, viral spread between neurons occurred in the absence of syncytium formation and with minimal extracellular virus. Electron microscopy analysis showed that viral budding did not occur from the neuronal surface, although nucleocapsids were present in the cytoplasm and aligned at the cell membrane. We observed many examples of nucleocapsids present in the neuronal processes and aligned at presynaptic neuronal membranes. Cocultures of CD46(+) and CD46(-) neurons showed that cell contact but not CD46 expression is required for MV spread between neurons. Collectively, these results suggest that the neuronal environment prevents the normal mechanisms of MV spread between neurons at the level of viral assembly but allows an alternate, CD46-independent mechanism of viral transmission, possibly through the synapse.  相似文献   

11.
Adams MM  Rice AD  Moyer RW 《Journal of virology》2007,81(20):11084-11095
The threat of smallpox release and use as a bioweapon has encouraged the search for new vaccines and antiviral drugs, as well as development of new small-animal models in which their efficacy can be determined. Here, we reinvestigate a rabbit model in which the intradermal infection of rabbits with very low doses of either rabbitpox virus (RPV) or vaccinia virus Western Reserve (VV-WR) recapitulates many of the clinical features of human smallpox. Following intradermal inoculation with RPV, rabbits develop systemic disease characterized by extensive viremia, numerous secondary lesions on the skin and mucocutaneous tissues, severe respiratory disease, death by 9 days postinfection, and, importantly, natural aerosol transmission between animals. Contrary to previous reports, intradermal infection with VV-WR also resulted in a very similar lethal systemic disease in rabbits, again with natural aerosol transmission between animals. When sentinel and index animals were cohoused, transmission rates approached 100% with either virus, with sentinel animals exhibiting a similar, severe disease. Lower rates of transmission were observed when index and sentinel animals were housed in separate cages. Sentinel animals infected with RPV with one exception succumbed to the disease. However, the majority of VV-WR-infected sentinel animals, while becoming seriously ill, survived. Finally, we tested the efficacy of the drug 1-O-hexadecyloxypropyl-cidofovir in the RPV/rabbit model and found that an oral dose of 5 mg/kg twice a day for 5 days beginning 1 day before infection was able to completely protect rabbits from lethal disease.  相似文献   

12.
Despite the recognized importance of fecal/oral transmission of low pathogenic avian influenza (LPAI) via contaminated wetlands, little is known about the length, quantity, or route of AI virus shed by wild waterfowl. We used published laboratory challenge studies to evaluate the length and quantity of low pathogenic (LP) and highly pathogenic (HP) virus shed via oral and cloacal routes by AI-infected ducks and geese, and how these factors might influence AI epidemiology and virus detection. We used survival analysis to estimate the duration of infection (from virus inoculation to the last day virus was shed) and nonlinear models to evaluate temporal patterns in virus shedding. We found higher mean virus titer and longer median infectious period for LPAI-infected ducks (10-11.5 days in oral and cloacal swabs) than HPAI-infected ducks (5 days) and geese (7.5 days). Based on the median bird infectious dose, we found that environmental contamination is two times higher for LPAI- than HPAI-infectious ducks, which implies that susceptible birds may have a higher probability of infection during LPAI than HPAI outbreaks. Less environmental contamination during the course of infection and previously documented shorter environmental persistence for HPAI than LPAI suggest that the environment is a less favorable reservoir for HPAI. The longer infectious period, higher virus titers, and subclinical infections with LPAI viruses favor the spread of these viruses by migratory birds in comparison to HPAI. Given the lack of detection of HPAI viruses through worldwide surveillance, we suggest monitoring for AI should aim at improving our understanding of AI dynamics (in particular, the role of the environment and immunity) using long-term comprehensive live bird, serologic, and environmental sampling at targeted areas. Our findings on LPAI and HPAI shedding patterns over time provide essential information to parameterize environmental transmission and virus spread in predictive epizootiologic models of disease risks.  相似文献   

13.
Deer mice (Peromyscus maniculatus) were inoculated with a sublethal dose of a field strain of Modoc virus to determine patterns of viral persistence, shedding, and transmission. Blood, serum, urine, fecal, and oral swab samples were collected at selected intervals until 63 days postinoculation (PI) after which lung, liver, spleen, kidney, and salivary glands were explanted. Viral assays were conducted by intracranial inoculations of suckling mice and antibody titers were determined by the micro-complement-fixation test. Viremias lasted for up to 4 days PI. Antibody titers were present by day 8 PI, peaked at day 13-20 PI, and persisted until day 63 PI. There was no evidence of viral shedding in urine, fecal, or oral swab samples. Virus was detected in explanted lungs only. In a separate experiment, deer mice were inoculated with virus and lungs were removed from five mice per wk for 10 wk. Indirect fluorescent antibody (IFA) techniques were used to determine the location of virus in lung tissue and to examine fixed tissue for lesions. IFA showed virus in lung parenchymal cells beginning 42 days PI and persisting at least 70 days PI. No histopathologic changes were seen. Horizontal transmission of the virus was studied by placing uninoculated mice with inoculated mice for 42 days and determining if the test animals developed antibodies or had virus in their lungs. Fifty-percent of the uninoculated mice developed antibody. One of these animals had virus in its lungs. Therefore, Modoc virus may be transmitted by direct contact.  相似文献   

14.
Hydroponic systems and intensive irrigation are used widely in horticulture and thus have the potential for rapid spread of water-transmissible plant pathogens. Numerous plant viruses have been reported to occur in aqueous environments, although information on their survival and transmission is minimal, due mainly to the lack of effective detection methods and to the complexity of the required transmission experiments. We have assessed the role of water as a source of plant infection using three mechanically transmissible plant pathogens that constitute a serious threat to tomato and potato production: pepino mosaic virus (PepMV), potato virus Y (PVY), and potato spindle tuber viroid (PSTVd). PepMV remains infectious in water at 20 ± 4°C for up to 3 weeks, PVY (NTN strain) for up to 1 week, and PSTVd for up to 7 weeks. Experiments using a hydroponic system show that PepMV (Ch2 genotype) and PVY (NTN strain) can be released from plant roots into the nutrient solution and can infect healthy plants through their roots, ultimately spreading to the green parts, where they can be detected after a few months. In addition, tubers developed on plants grown in substrate watered with PSTVd-infested water were confirmed to be the source of viroid infection. Our data indicate that although well-known pathways of virus spread are more rapid than water-mediated infection, like insect or mechanical transmission through leaves, water is a route that provides a significant bridge for rapid virus/viroid spread. Consequently, water should be taken into account in future epidemiology and risk assessment studies.  相似文献   

15.
Earlier primate studies revealed that oral transmission of immunodeficiency viruses can occur at all ages [R. M. Ruprecht et al., J. Infect. Dis. 179(Suppl. 3):S408-S412, 1999]. Using a stock of pathogenic simian-human immunodeficiency virus, SHIV89.6P, we compared the 50% animal infectious dose needed to achieve systemic infection after oral challenge in newborn and older infant or juvenile rhesus macaques. Unexpectedly, the older monkeys required a 150-fold-lower virus challenge dose than the neonates (P=3.3 x 10(-5)). In addition, at least 60,000 times more virus was needed to achieve systemic infection in neonates by the oral route than by the intravenous route (P <1 x 10(-5)). Thus, route of inoculation and age are important determinants of SHIV89.6P infectivity in rhesus macaques.  相似文献   

16.
Borna disease virus is an uncharacterized agent that causes sporadic but fatal neurological disease in horses and sheep in Europe. Studies of the infection in rats have shown that the agent has a strict tropism for neural tissues, in which it persists indefinitely. Inoculated rats developed encephalitis after an incubation period of 17 to 90 days. This report shows that the incubation period is the time required for transport of the agent in dendritic-axonal processes from the site of inoculation to the hippocampus. The immune responses to the agent had no effect on replication or transport of the virus. The neural conduit to the brain was proven by intranasal inoculation of virus that resulted in rapid transport of the agent via olfactory nerves to the hippocampus and in development of disease in 20 days. Virus inoculation into the feet resulted in spread along nerve fibers from neuron to neuron. There was sequential replication in neurons of the dorsal root ganglia adjacent to the lumbar spinal cord, the gracilis nucleus in the medulla, and pyramidal cells in the cerebral cortex, followed by infection of the hippocampal neurons and onset of disease. This progression required 50 to 60 days. The exclusiveness of the neural conduit was proven by failure to cause infection after injection of the virus intravenously or into the feet of neurectomized rats.  相似文献   

17.
Essential herpesvirus glycoproteins are involved in membrane fusion processes during infection, e.g., viral penetration and direct cell-to-cell transmission. We previously showed that the gD-homologous glycoprotein gp50 of pseudorabies virus (PrV) is essential for virus entry into target cells but proved to be dispensable for direct viral cell-to-cell spread in cell culture (I. Rauh and T. C. Mettenleiter, J. Virol. 65:5348-5456, 1991). For gp50-negative (gp50-) viruses, after phenotypic complementation necessary for primary infection, the only means of viral spread is by way of direct cell-to-cell transmission. In contrast, virus mutants lacking the essential gB-homologous glycoprotein gII after phenotypic complementation are only able to infect primary target cells and are blocked in further viral spread. To analyze how these in vitro phenotypes translate into virus replication in the animal, mice were infected intranasally with gp50- or gII- PrV mutants after prior phenotypic complementation by propagation on cell lines providing the essential glycoprotein in trans. Our results show that whereas the gII- mutants did not cause disease or any symptoms, gp50- mutants derived from two different PrV strains were fully virulent, with animals exhibiting severe symptoms ultimately leading to death. However, free infectious virus could not be recovered from either gp50- or gII- PrV-infected animals. We conclude that direct cell-to-cell transmission as the only means of viral spread of the gp50- mutants is sufficient for a full virulent phenotype in mice. After infection of pigs with phenotypically complemented gp50- PrV, only mild symptoms were observed, whereas the gII- mutant was totally avirulent. In both cases, shedding of infectious virus did not occur, in contrast to results with animals infected by gX- PrV that showed severe signs of disease and extensive virus shedding. After challenge infection with the highly virulent NIA-3 strain, the previously gII- PrV-infected animals exhibited severe symptoms, whereas the gp50- PrV-infected pigs showed a significant level of protection. In conclusion, vaccination with a PrV mutant lacking glycoprotein gp50, which is unable to spread between animals because of a lack of formation of free infectious virions, can confer on pigs protection against challenge infection. These results provide the basis for the development of new, nonspreading live herpesvirus vaccines based on gp50- PrV mutants.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) causes disease in humans and animals. Infection usually occurs via the neural route and possibly occurs via the hematogenous route. The latter, however, is the main route by which immunosuppressed individuals and neonates are infected. Gender-dependent differences in the incidence and severity of some viral infections have been reported. To detect differences between the sexes with respect to HSV-1 colonization and disease, the characteristics of both acute and latent infections in hematogenously infected male and female mice were compared. In acute infection, the female mice had a poorer outcome: HSV-1 colonization was more effective, especially in the gonads and brain. In the encephalon, the midbrain had the highest viral load. In latent infection, brain viral loads were not significantly different with respect to sex. Significant differences were seen, however, in the blood and trigeminal ganglia: HSV-1 seroprevalence was observed in females, with no virus detected in males. In brain dissections, only the cerebral cortex of the females had viral loads statistically higher than those observed in the males. The spread of the virus to several organs of interest during acute infection was examined immunohistochemically. Female mice showed greater viral immunostaining, especially in the adrenal cortex, gonads, and midbrain. In male mice, HSV-1 was detected predominantly in the adrenal cortex. It was also found that apolipoprotein E promotes virus colonization of the ovaries, the APOE gene dose being directly related to viral invasiveness.  相似文献   

19.
The simian immunodeficiency virus (SIV)-rhesus macaque model of heterosexual human immunodeficiency virus transmission consists of atraumatic application of cell-free SIVmac onto the intact vaginal mucosa of mature female rhesus macaques. This procedure results in systemic infection, and eventually infected animals develop the clinical signs and pathologic changes of simian AIDS. To achieve 100% transmission with the virus stocks used to date, multiple intravaginal inoculations are required. The current titration study utilized two stocks of SIVmac and demonstrated that a single intravaginal dose of cell-free SIV can reliably produce infection in rhesus macaques. This study also demonstrated that some animals intravaginally inoculated with cell-free SIVmac develop transient viremia characterized by a limited ability to isolate virus from peripheral blood mononuclear cells and lymph node mononuclear cells and no seroconversion to SIV antigen. SIV could be isolated from the peripheral lymph nodes of transiently viremic animals only during periods of viremia and not at times when SIV was not detected in circulating mononuclear cells. Thus, peripheral lymphoid tissues were not reservoirs of infection in the transiently viremic animals. Taken together, these results suggest either that the SIV infection was cleared in the transiently viremic animals or that SIV infection is limited to a compartment of the genital mucosal immune system that cannot be assessed by monitoring SIV infection in peripheral blood mononuclear cells and peripheral lymphoid tissue.  相似文献   

20.
Three of 14 cynomolgus monkeys given the highest dose of an immunosuppressive drug in a 6-month toxicology study developed B virus (Herpesvirus simiae) oral lesions after 3 months of dosing. This necessitated early removal of all high-dose monkeys from the study due to concerns related to B virus. The incidence and severity of parasitic (Oesphagostomum sp.) lesions of the large intestine were also increased in high-dose animals. Both B virus and Oesophagostomum are enzootic in macaques, and the lesions caused by them were considered secondary to chronic immunosuppression caused by the highest dose of the test compound. Evidence of immunosuppression included decreased lymphocyte counts (B-cells; CD2 and CD8 T-cells), histopathologic evidence of lymphoid suppression, and serum-induced inhibition of lymphocyte mitogen responses. Pathogenesis of the B virus was apparently associated with both activation of latent virus as well as transmission of active virus. Approaches for virologic monitoring of primates and for ensuring optimal safety for primate handlers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号