首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The LAM1 molecule is a member of the new family of cellular adhesion/homing molecules that contain a lectin-like domain at their amino-terminal end followed by an epidermal growth factor-like domain and short consensus repeat units like those found in C3/C4 binding proteins. Two mAb that react with the leukocyte adhesion molecule 1 (LAM1) were produced and used to examine the cell-surface expression of LAM1. The anti-LAM1 antibodies were reactive with the majority of blood lymphocytes, NK cells, neutrophils, and monocytes. LAM1 was also expressed by subpopulations of phenotypically immature and mature thymocytes. Blood lymphocytes rapidly modulated LAM1 from the cell surface during PMA exposure for 60 min. Coordinate with the loss of LAM1 from the cell surface, PMA-treated lymphocytes lost the ability to bind to lymph node high endothelial venules, indicating that expression of LAM1 may play a role in lymphocyte homing. Mitogen stimulation of blood T and B lymphocytes also resulted in decreased LAM1 expression, but at a slower rate. LAM1 was only weakly expressed by a minority of spleen lymphocytes. However, culturing spleen lymphocytes in media alone resulted in increased expression of LAM1 by a subpopulation of the cells (40 to 60%). Concomitant mitogen stimulation of spleen lymphocytes resulted initially in down-regulation of LAM1 expression followed by increased expression of LAM1 and then subsequent loss of LAM1 from the cell surface. The pattern of anti-LAM1 antibody reactivity was identical to that reported for the TQ1 and Leu-8 antibodies, and all of these antibodies reacted with cells transfected with the LAM1 cDNA. Thus, LAM1 is broadly expressed by leukocytes, and binding of LAM1 may participate in the process of leukocyte extravasation into lymphoid organs or sites of acute inflammation with subsequent loss of LAM1 from the cell surface.  相似文献   

2.
The leukocyte adhesion molecule-1 (LAM-1, TQ=1, Leu-8) in humans, like its murine homologue, MEL-14, is the principal receptor that mediates the binding of leukocytes to high endothelial venules (HEV) of peripheral lymph nodes. In this study, several regions of the protein which mediate receptor function were identified by using a large panel of murine mAb reactive with LAM-1. Individual mAb reacted with LAM-1+ cells with characteristic intensities of immunofluorescence staining, and each bound both lymphocytes and neutrophils. Lymphocyte attachment to HEV was significantly inhibited by the binding of five mAb. In contrast, only two of these mAb were able to completely block the binding of phosphomannan monoester core complex from the yeast Hansenula holstii cell wall (PPME), a phosphomannan monoester core polysaccharide that serves as a soluble model of the natural ligand of LAM-1. Interestingly, the binding of two anti-LAM-1 mAb to cells induced a significant increase in PPME binding, reminiscent of the increase in receptor affinity observed after leukocyte activation. Antibody cross-blocking studies indicated that many of the functionally important epitopes were spatially distinct, and domain mapping indicated that they recognized distinct domains of LAM-1. The expression and function of these epitopes were further assessed by using a variety of animal species to further characterize the functionally relevant epitopes defined in these studies. At least some anti-LAM-1 mAb reacted with leukocytes from monkey, cow, rabbit, sheep, dog, cat, pig, and goat, but not from chicken, rat, or mouse. The reactivity of anti-LAM-1 mAb in several animal species correlated with the ability of leukocytes to bind PPME, and mAb that inhibited lymphocyte binding to HEV in man could also inhibit this function in rhesus monkey and dog. Thus, several LAM-1 epitopes are structurally and functionally well conserved throughout recent mammalian evolution, emphasizing an important role for LAM-1 in the regulation of leukocyte traffic.  相似文献   

3.
In this report, we describe a 76-kDa glycoprotein recognized by mAb FMC46 that, by virtue of its concentration on cell protrusions involved in motility, may be important in lymphoid cell locomotion. FMC46 detects an epitope of the leukocyte adhesion molecule-1 (LAM-1), a member of the selecting family (LAM-1, Endothelial Leukocyte Adhesion Molecular-1 (ELAM-1), and Granule Membrane Protein-140 (GMP-140), that is expressed on LAM-1-transfected cell lines, is a glycosylation epitope based on its loss after culture in tunicamycin, and is closely related to the LAM-1.2 epitope. FMC46 is expressed at high density on the majority of CD45RA+ and CD45RO+ peripheral blood T cells (60 to 70%) and on a subset of thymocytes that includes the multinegative CD3- CD4- CD8- progenitor cells (100% FMC46hi) and the CD45R0- presumptive thymic generative lineage (70% FMC46hi). It appears at reduced density and frequency on CD45RA- thymocytes (50% FMC46lo), comprised mainly of death-committed thymocytes. Among thymic subsets defined by expression of CD4 and/or CD8, FMC46 is expressed at high density predominantly on a subset of single-positive cells and not on double-positive cells. These results suggest a fundamental role for LAM-1 in thymic development, with a high density preferentially expressed on cells involved in thymic generative processes and a low density on cells progressing to intrathymic death. A major subset of peripheral blood B cells and thymic B cells also express FMC46. Immunohistochemistry on frozen sections indicated strong staining in splenic follicles and around blood vessels, staining of the thymic medulla and subcapsular areas, and staining of the mantle zone of germinal centers of the lymph node. FMC46+ lymphocytes accumulated along high endothelial venules in the lymph node. On locomoting multinegative thymocytes, FMC46 is concentrated on the leading tip of extended processes, on pseudopods, and on ruffles, unlike the distribution of either CD44 or TQ1 (LAM 1.2), suggesting a role in locomotion. On dividing multinegative thymocytes, FMC46 was found almost exclusively along the cleavage furrow, implicating it in detachment processes. We conclude that the properties of the LAM-1 molecule recognized by FMC46 are consistent with a role in detachment phases of motility and of cell interactions.  相似文献   

4.
There is increasing evidence that cytokines such as granulocyte-macrophage (GM)-CSF can profoundly affect the adhesion, aggregation, and mobility of neutrophils both in vitro and in vivo. However, the mechanisms whereby these factors might alter the adhesive properties of neutrophils are incompletely understood. A new family of cellular adhesion molecules has recently been identified by cDNA cloning. The members of this family include human leukocyte adhesion molecule-1 (LAM-1), the human endothelial-leukocyte adhesion molecule, and the mouse leukocyte homing receptor for high endothelial venules, MEL-14. LAM-1 is the human homologue of murine MEL-14, and is believed to mediate binding of leukocytes to human high endothelial venules. LAM-1 can be identified by mAb TQ-1, Leu 8, or anti-LAM1.1. The expression and regulation of LAM-1 on granulocytes, monocytes, and their precursors was investigated using flow cytometry and the anti-LAM-1.1 mAb. Neutrophils, eosinophils, monocytes, marrow myeloid cells, granulocyte/macrophage colony-forming unit, and burst-forming unit for erythroid cells were LAM-1+ by flow microfluorimetry. The regulation of LAM-1 expression was tested by treating various cell populations with cytokines or other stimuli for 0-90 min. Exposure of neutrophils, monocytes, and marrow myeloid cells to GM-CSF induced rapid and complete loss of LAM-1 from the cell surface, but had no effect on LAM-1 expression by lymphocytes. The loss of LAM-1 was temporally correlated with up-regulation of CD11b (Mo1), an adhesion molecule involved in neutrophil aggregation. Several other factors known to activate neutrophils also caused down-regulation of LAM-1 and up-regulation of CD11b, including TNF, FMLP, and leukotriene B4. Interestingly, granulocyte-CSF and IFN-gamma had minimal effects on neutrophil LAM-1 expression. Similar results were observed on monocytes and myeloid precursor cells. Thus, exposure of neutrophils to GM-CSF results in a profound change in surface expression of adhesion molecules, with coordinated up-regulation of CD11b and down-regulation of LAM-1. These changes in adhesion proteins are likely to alter aggregation and mobility of both mature myeloid cells and their precursors in patients receiving certain types of cytokine therapy.  相似文献   

5.
Isolation and characterization were performed for cDNA encoding mouse testicular cell adhesion molecule-1 (TCAM-1) using 2908 bases coding for a protein having 548 amino acids (60 kDa). Mouse TCAM-1 protein was found to consist of seven domains for signal sequence, five immunoglobulin (Ig) domains, and the transmembrane plus cytoplasmic domain. TCAM-1 gene and the region linking it to growth hormone (GH) gene located downstream from the TCAM-1 gene were then analyzed. The mouse TCAM-1 gene was 11.6 kb in length with 8 exons; the same as for the 12.0 kb rat gene. The distance from the TCAM-1 to GH gene was 12.5 kb in the mouse genome, and 7.6 kb in the rat. By Northern hybridization, 3.1-kb TCAM-1 mRNA was detected in 17-day testis and would appear present in pachytene spermatocytes and round spermatids.  相似文献   

6.
7.
The human lymphocyte homing receptor, LAM-1, mediates the adhesion of lymphocytes to specialized high endothelial venules (HEV) of peripheral lymph nodes. We now report that LAM-1 is also a major mediator of leukocyte attachment to activated human endothelium. In a novel adhesion assay, LAM-1 was shown to mediate approximately 50% of the adhesion of both lymphocytes and neutrophils to TNF-activated human umbilical vein endothelial cells at 4 degrees C. The contribution of LAM-1 to leukocyte adhesion was only detectable when the assays were carried out under rotating (nonstatic) conditions, suggesting that LAM-1 is involved in the initial attachment of leukocytes to endothelium. In this assay at 37 degrees C, essentially all lymphocyte attachment to endothelium was mediated by LAM-1, VLA-4/VCAM-1, and the CD11/CD18 complex, whereas neutrophil attachment was mediated by LAM-1, endothelial-leukocyte adhesion molecule-1, and CD11/CD18. Thus, multiple receptors are necessary to promote optimal leukocyte adhesion to endothelium. LAM-1 also appeared to be involved in optimal neutrophil transendothelial migration using a videomicroscopic in vitro transmigration model system. LAM-1-dependent leukocyte adhesion required the induction and surface expression of a neuraminidase-sensitive molecule that was expressed for at least 24 h on activated endothelium. Expression of the LAM-1 ligand by endothelium was optimally induced by LPS and the proinflammatory cytokines TNF-alpha and IL-1 beta, whereas IFN-gamma and IL-4 induced lower levels of expression. The LAM-1 ligand on HEV and cytokine treated endothelium may be similar carbohydrate-containing molecules, because phosphomannan monoester core complex from yeast Hansenula hostii cell wall blocked binding of lymphocytes to both cell types, and identical epitopes on LAM-1-mediated lymphocyte attachment to HEV and activated endothelium. Thus, LAM-1 and its inducible endothelial ligand constitute a new pair of adhesion molecules that may regulate initial leukocyte/endothelial interactions at sites of inflammation.  相似文献   

8.
9.
We have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1) and the complex of leukocyte surface adhesion molecules designated CD11/CD18 to the adhesion of human polymorphonuclear leukocytes (PMN) to cultured human endothelial cells (HEC), activated by rIL-1 beta for 4 or 24 h. Inhibition of PMN attachment to IL-1-activated HEC was measured in a quantitative in vitro monolayer adhesion assay, after treatment with mAb directed to ELAM-1 (mAb H18/17), and to CD11a (mAb L11), CD11b (mAb 44), CD11c (mAb L29), and CD18 (mAb 10F12), alone or in combination. Pretreatment of activated HEC with mAb H18/7 inhibited PMN adhesion by 47 +/- 8% whereas control mAb had no effect. CD11/CD18-directed mAb significantly blocked PMN adhesion to activated HEC (anti-CD11a, 40 +/- 3%; anti-CD11b, 34 +/- 4%; anti-CD18, 78+/- 6% inhibition). The combination of mAb H18/7 and each of the various anti-CD11/CD18 mAb resulted in greater inhibition of PMN adhesion than any Mab alone. After 24 h of rIL-1 beta treatment, when ELAM-1 was markedly decreased but elevated PMN adhesion was still observed, mAb H18/7 had no effect on PMN adhesion. At this time, CD11/CD18-dependent adhesive mechanisms predominated and a CD11c-dependent mechanism became apparent (anti-CD11a, 67 +/- 4% inhibition; anti-CD11b, 45 +/- 9%; anti-CD11c, 26 +/- 6%; anti-CD18, 97 +/- 1%). In summary, PMN adhesion to IL-1-activated HEC involves both CD11/CD18-dependent mechanisms and an ELAM-1-dependent mechanism, and the relative contribution of these varies at different times of IL-1-induced HEC activation. The additive blocking observed at 4 h with mAb H18/7 in combination with CD11/CD18-directed Mab implies that members of the CD11/CD18 complex do not function as an obligate ligand(s) for ELAM-1.  相似文献   

10.
We have shown that intercellular adhesion molecule-1 (ICAM-1) (CD54) positive cells are mainly responsible for the natural cytotoxic function of human blood lymphocytes. The evidences were the inhibition of cytotoxicity by anti-ICAM-1 (LB-2) monoclonal antibodies (mAb) and the loss of lytic activity after removal of the ICAM-1+ cells. In addition, the cytotoxic potential of the separated ICAM-1- lymphocyte population after activation appeared in parallel with the expression of this molecule. The ICAM-1+ lymphocytes lysed both LFA-1 (CD11a/CD18 or Leu-CAMa) positive and negative cell lines, and pretreatment of the effectors with the LB-2 mAb also inhibited the lysis of LFA-1- targets. The results point to a yet unrecognized role of ICAM-1 on the lymphocytes. Kinetics experiments suggested that pretreatment of lymphocytes with alpha-ICAM-1 (LB-2) mAb did not inhibit the promptly established lytic interactions but influenced later events, recycling and/or recruitment of effectors. It is possible that the cytotoxic potential is regulated by contacts between the members of the lymphocyte population and that these events occur via their ICAM-1 and LFA-1. Exposure of lymphocytes to NK-sensitive targets for 16 hr elevated their cytotoxic potential. The function of activated lymphocytes was not inhibited by the LB-2 mAb.  相似文献   

11.
Adherence of neutrophils to endothelium is a key event in the sequence of inflammatory leukocyte responses. Double-color FACS analysis was used to determine the extent and kinetics of neutrophil adherence to rIL-1 beta-pretreated endothelial cells (EC). Neutrophils bound very avidly when the EC were prestimulated for 4 to 6 h with rIL-1 beta. Anti-ELAM-1 F(ab)2 fragments inhibited this adherence for more than 80%. On the other hand, anti-CD18 F(ab)2 fragments also inhibited the neutrophil adherence (40 to 50%). Combined use of anti-ELAM-1 and anti-CD18 F(ab)2 fragments completely prevented adherence. Neutrophils became activated as soon as they made contact with the rIL-1 beta-pretreated EC. First, neutrophils depleted of intracellular ATP showed a clearly decreased adherence completely dependent on ELAM-1-mediated binding, i.e., without additional effects of CD18 adhesion proteins. Thus, CD18 is activated during neutrophil adherence and then participates in the binding process. Secondly, the neutrophils responded with a transient rise in [Ca2+]i upon binding to rIL-1 beta-pretreated EC, which was demonstrated to be caused by endothelial cell-associated platelet-activating factor (PAF). However, the extent of neutrophil adherence to rIL-1 beta-pretreated EC was not affected by the use of the PAF-receptor antagonist WEB 2086, or removal of the EC-bound PAF. The only effect was a complete dependency of the neutrophil adherence on ELAM-1-mediated binding, although anti-CD18 mAb still induced 40 to 50% inhibition under these conditions. We therefore conclude that ELAM-1-mediated binding is the major mechanism for CD18 activation during neutrophil adherence to rIL-1 beta-pretreated EC.  相似文献   

12.
The effects of several cytokines and phorbol myristate acetate (PMA) on LFA-1 and ICAM-1 expression on a human eosinophilic leukemia cell line, EoL-3, were investigated and compared with those of a human monocytic leukemia cell line, U937. EoL-3 cells expressed large amounts of LFA-1 and small amounts of ICAM-1, and their expression was regulated similarly in EoL-3 cells and U937 cells. Interferon-gamma (IFN-gamma) enhanced ICAM-1 expression but not LFA-1 expression, and PMA augmented both LFA-1 and ICAM-1 expression. IFN-gamma and PMA showed an additive effect on ICAM-1 expression. These results collectively suggest that expression of LFA-1 and ICAM-1 is regulated differently and that IFN-gamma and PMA regulate the expression through different mechanisms. PMA but not IFN-gamma induced homotypic adhesion of EoL-3 and U937 cells, suggesting that PMA but not IFN-gamma activated the adhesive function of these cells. Staurosporin, an inhibitor of protein kinases (PKs), partly suppressed IFN-gamma- and PMA-augmented expression of ICAM-1 on EoL-3 and U937 cells, but did not affect PMA-augmented LFA-1 expression, suggesting that staurosporin-sensitive PKs are involved in IFN-gamma- and PMA-augmented ICAM-1 expression but not in PMA-augmented LFA-1 expression. The role of protein kinase C (PK-C) in these mechanisms was not revealed because a PK-C inhibitor, H-7, did not show any definitive effect on IFN-gamma- and PMA-induced expression of LFA-1 and ICAM-1. Moreover, cyclic AMP (cAMP)- and cGMP-dependent pathways were not shown to be involved in the augmentation of the expression of these molecules.  相似文献   

13.
B Drabent  E Kardalinou  D Doenecke 《Gene》1991,103(2):263-268
The gene coding for the human H1t histone, a testis-specific H1 subtype, was isolated from a genomic library using a human somatic H1 gene as a hybridization probe. The corresponding mRNA is not polyadenylated and encodes a 206-amino-acid protein. Sequence analysis and S1 nuclease mapping of the human H1t gene reveals that the 5' flanking region contains several consensus promoter elements, as described for somatic, i.e., S-phase-dependent H1 subtype genes. The 3' region includes the stem-and-loop structure necessary for mRNA processing of most histone mRNAs. Northern blot analysis with RNAs from different human tissues and cell lines revealed that only testicular RNA hybridized with this gene probe.  相似文献   

14.
Intercellular adhesion molecule-1 (ICAM-1) is an integral membrane protein, a member of the immunoglobulin superfamily, and a ligand for LFA-1, a beta 2 leukocyte integrin. ICAM-1 has a tissue distribution similar to that of the major histocompatibility complex class II antigens and is likely to play a role in inflammatory responses. We have mapped this gene to proximal mouse chromosome 9 by using mouse-hamster somatic cell hybrids and an interspecies backcross. Since human ICAM-1 maps to chromosome 19, it joins the LDL receptor to establish a new conserved syntenic segment between human chromosome 19 and proximal mouse chromosome 9. Murine Icam-1 maps between Cbl-2 and the centromere in the same region as one of the susceptibility genes for insulin-dependent diabetes mellitus (Idd-2) that is postulated to play a role in immune function and inflammation leading to insulitis. The mapping of Icam-1 to the region known to contain the Idd-2 gene raises the question of whether the phenotypic differences attributed to the Idd-2 locus might be due to genetic variation in Icam-1.  相似文献   

15.
Treatment of vascular endothelial cells with inflammatory cytokines stimulates surface expression of E-selectin (previously known as endothelial-leukocyte adhesion molecule-1) and promotes the transendothelial migration of neutrophils. To assess participation of E-selectin in cytokine-mediated neutrophil migration, an in vitro model consisting of monolayers of human umbilical vein endothelial cells (HUVEC) grown on amniotic connective tissue was used. When HUVEC-amnion cultures were stimulated for 4 h with relatively low concentrations of IL-1 (0.1 to 0.15 U/ml), mAb BB11 or H18/7 to E-selectin partially inhibited migration of subsequently added neutrophils. However, when the cultures were stimulated with 15 U/ml of IL-1 for 4 or 24 h, little to no inhibition was observed. mAb to E-selectin also failed to inhibit migration of neutrophils across HUVEC-amnion cultures treated with low doses of IL-1 when the leukocytes were additionally stimulated by the chemoattractant leukotriene B4. In contrast, migration of neutrophils across IL-1-treated HUVEC was profoundly inhibited by mAb to CD11/CD18 leukocytic integrins under all conditions tested. Results of these studies suggest that participation of E-selectin is not essential for migration of neutrophils across cytokine-stimulated HUVEC in vitro; rather, E-selectin can be bypassed in favor of CD11/CD18-dependent mechanisms under appropriate circumstances.  相似文献   

16.
Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg(2+), a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.  相似文献   

17.
The chemokine IL-8 is found on the luminal side of vascular endothelial cells, where it is postulated to be immobilized during inflammation. In this study, we observed that immobilized IL-8 can stimulate neutrophils to firmly adhere to a substrate containing ICAM-1 in a static adhesion assay. Soluble IL-8 was then perfused over neutrophils rolling on P-selectin (P-sel) and ICAM-1, confirming that IL-8 in solution can quickly cause rolling neutrophils to arrest. To mimic a blood vessel wall with IL-8 expressed on the luminal surface of endothelial cells, IL-8 was immobilized along with P-sel and ICAM-1 at defined site densities to a surface. Neutrophils rolled an average of 200 microm on surfaces of P-sel, ICAM-1, and IL-8 before firmly adhering through ICAM-1-beta(2) integrin interactions at 2 dynes/cm(2) wall shear stress. Increasing the density of IL-8 from 60 to 350 sites/microm(2) on the surface decreased by 50% the average distance and time the neutrophils rolled before becoming firmly adherent. Temporal dynamics of ICAM-1-beta(2) integrin interactions of rolling neutrophils following IL-8 exposure suggest the existence of two classes of beta(2) integrin-ICAM-1 interactions, a low avidity interaction with a 65% increase in pause times as compared with P-sel-P-sel glycoprotein ligand-1 interactions, and a high avidity interaction with pause times 400% greater than the selectin interactions. Based on the proportionality between IL-8 site density and time to arrest, it appears that neutrophils may need to sample a critical number of IL-8 molecules presented by the vessel wall before forming a sufficient number of high avidity beta(2) integrin bonds for firm adhesion.  相似文献   

18.
《Gene》1997,194(2):301-303
Colligins are collagen-binding proteins localized to the endoplasmic reticulum that belong to the superfamily of serine protease inhibitors and play a role in collagen biosynthesis. Previously, we cloned the human colligin-2 gene (CBP2) and mapped it to chromosome 11q13.15. To further characterize the CBP2 gene, we have determined its genomic structure and the 5′-flanking sequence. The CBP2 gene spanned approximately 11 kb of genomic DNA and consisted of five exons. The promoter sequence of the human gene showed significant homology to that of its murine counterpart, which contained several regulatory sequences including heat-shock and retinoic acid-responsive elements. These findings suggest colligin may function as a collagen-specific molecular chaperon and play a role in the process of retinoic acid-induced differentiation.  相似文献   

19.
20.
We have compared the adhesion of 51Cr-labeled eosinophils and neutrophils to cultured human umbilical vein endothelial cell (EC) monolayers that have been stimulated with IL-1, TNF, or LPS. Each agent stimulated the adhesion to EC of both eosinophils and neutrophils in a similar dose- and time-dependent manner. F(ab')2 fragments of mAb 1.2B6 (anti-endothelial leukocyte adhesion molecule (ELAM)-1) and mAb 6.5B5 (anti-intercellular adhesion molecule (ICAM)-1) each inhibited partially, and to a similar extent, eosinophil and neutrophil adhesion to EC monolayers prestimulated with TNF (10 ng/ml) for 6 h. Greater inhibition of both eosinophil and neutrophil adhesion was achieved by combining the effects of mAb 1.2B6 with either mAb 6.5B5 or mAb TS1/18 (anti-CD18). These observations indicate that both ELAM-1 and ICAM-1 are involved in the adhesion of eosinophils and neutrophils to EC stimulated with TNF. In order to determine whether these molecules are expressed in vivo during allergen-induced late phase allergic responses in the skin, human skin biopsies were examined at 6 h after Ag or saline challenge with the use of an alkaline phosphatase-staining technique. Both ELAM-1 and ICAM-1 were expressed with greater intensities in Ag-challenged biopsies, suggesting that these molecules may be involved in granulocyte recruitment in vivo. The similarities we have established between mechanisms of eosinophil and neutrophil adhesion to cytokine-stimulated EC suggests that factors other than differential leukocyte-EC adhesion may be responsible for the selective accumulation of eosinophils at sites of allergic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号