首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Two experiments were undertaken to determine the hormonal response of Merino ewes to immunization against androstenedione (Fecundin). In Exp. 1 peripheral concentrations of LH, FSH and progesterone were monitored in spontaneously cycling ewes (20 immunized and 21 controls). In Exp. 2 (10 immunized and 10 controls) the same hormones were measured in ewes before and after prostaglandin (PG)-induced luteolysis and, in addition, the pattern of pulsatile LH secretion was determined during the luteal (PG + 12 days), early follicular (PG + 24 h) and late follicular (PG + 40 h) phase of the oestrous cycle. Ovulation rates were measured in both experiments. The results of these experiments indicate that androstenedione-immune animals have elevated ovulation rates (0.6-0.7 greater than control animals; P less than 0.05) associated with elevated plasma concentrations of LH and progesterone. The magnitude of the increase in plasma progesterone was correlated with androstenedione antibody titre (r = 0.6, P less than 0.001). LH pulse frequency of androstenedione-immune ewes tended to be higher at all stages of the oestrous cycle, but this difference was only significant (P less than 0.05) during the luteal phase. Mean plasma concentrations of FSH did not differ significantly between immunized and control ewes at any stage of the cycle. Analysis of periodic fluctuations in FSH during the luteal phase revealed that androstenedione-immune animals had a similar number of fluctuations of a similar amplitude to those of control animals, but the nadir of these fluctuations was lower (P less than 0.05) in immunized animals. A significant (P less than 0.05) negative correlation existed between androstenedione antibody titre and the interval between FSH peaks (r = -0.49) and androstenedione antibody titre and FSH nadir concentrations (r = -0.46). It is concluded that plasma FSH concentrations are not a determinant of ovulation rate in androstenedione-immune ewes and that increased LH concentrations, or perturbation of normal intraovarian mechanisms, may be responsible for the increase in ovulation rate observed in ewes immunized against androstenedione.  相似文献   

2.
Two experiments were conducted during the anoestrous period in Border Leicester x Merino ewes with ovarian autotransplants to study the effects of a single injection of 20 mg progesterone on follicular steroid secretion. The aim of these experiments was to determine whether pretreatment with a 20 mg intramuscular injection of progesterone could reduce GnRH-induced ovarian steroid secretion in anoestrous ewes. In both experiments, an injection of 150 ng GnRH induced an LH pulse in all ewes with a maximum concentration 10 min (the first post-injection sample) after injection. Oestradiol and androstenedione secretion increased progressively after the GnRH-induced LH pulse and reached maximum rates of secretion between 60 and 90 min before decreasing slowly to pre-injection rates at 150 min. There were no differences in the pattern of secretion of oestradiol (measured in both experiments) or androstenedione (measured only in Expt 2). In Expt 1, the injection of progesterone 72 h before the challenge with GnRH had no effect on the maximum rate of oestradiol secretion from the autotransplanted ovary. However, in Expt 2, when progesterone was given either 36 or 60 h before GnRH, there was a significant suppression in the maximum rate of secretion of both oestradiol and androstenedione between 60 and 90 min after GnRH injection. These data show that pretreatment of anoestrous sheep with progesterone can suppress LH-stimulated steroid secretion from the ovary and indicate that progesterone may have a direct effect on oestrogenic follicles in sheep.  相似文献   

3.
Fifteen ovariectomized ewes were treated with implants (s.c.) creating circulating luteal progesterone concentrations of 1.6 +/- 0.1 ng ml-1 serum. Ten days later, progesterone implants were removed from five ewes which were then infused with saline for 64 h (0.154 mol NaCl l-1, 20 ml h-1, i.v.). Ewes with progesterone implants remaining were infused with saline (n = 5) or naloxone (0.5 mg kg-1 h-1, n = 5) in saline for 64 h. At 36 h of infusion, all ewes were injected with oestradiol (20 micrograms in 1 ml groundnut oil, i.m.). During the first 36 h of infusion, serum luteinizing hormone (LH) concentrations were similar in ewes infused with saline after progesterone withdrawal and ewes infused with naloxone, but with progesterone implants remaining (1.23 +/- 0.11 and 1.28 +/- 0.23 ng ml-1 serum, respectively, mean +/- SEM, P greater than 0.05). These values exceeded circulating LH concentrations during the first 36 h of saline infusion of ewes with progesterone implants remaining (0.59 +/- 0.09 ng ml-1 serum, P less than 0.05). The data suggested that progesterone suppression of tonic LH secretion, before oestradiol injection, was completely antagonized by naloxone. After oestradiol injection, circulating LH concentrations decreased for about 10 h in ewes of all groups. A surge in circulating LH concentrations peaked 24 h after oestradiol injection in ewes infused with saline after progesterone withdrawal (8.16 +/- 3.18 ng LH ml-1 serum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Experiments were carried out to test the hypothesis that inhibin and oestradiol act synergistically to inhibit the secretion of FSH, to test for effects of progesterone, and to compare the FSH and LH responses to ovarian feedback. In Exp. 1, with 11 ovariectomized and 12 intact Romanov ewes during the anoestrous season, doses of oestradiol (administered by means of subcutaneous implants) that restored normal LH pulse frequencies were insufficient to restore normal concentrations of FSH. In Exp. 2, with 48 ovariectomized Welsh Mountain ewes during the breeding season, a factorial design with 4 ewes per cell was used to assess the responses in LH and FSH to 3 doses of oestradiol (s.c. implants) and 4 doses of bovine follicular fluid ('inhibin', 0.2-1.6 ml s.c. every 8 h). This was done initially in the absence of progesterone and then after 7 days of treatment with progesterone (s.c. implants). Analysis of variance revealed a significant synergistic interaction between oestradiol and inhibin on the plasma concentrations of FSH. Progesterone had little effect. In contrast, there was a significant synergistic interaction between oestradiol and progesterone on the concentrations of LH. 'Inhibin' also inhibited LH secretion but this effect was independent of the two steroids. We conclude that there are basic differences in the way that ovarian feedback acts to control the secretion of LH and FSH in the ewe. FSH secretion appears to be primarily controlled by the synergistic action of oestradiol and inhibin on the anterior pituitary gland, while the secretion of LH is inhibited during the follicular phase by an effect of oestrogen at pituitary level and during the luteal phase by the synergistic action of oestradiol and progesterone at the hypothalamic level. Inhibin, or another non-steroidal factor in follicular fluid, may also play a minor role in the control of LH secretion.  相似文献   

5.
The aim of this study was to elucidate the mechanism(s) involved in stress-induced subfertility by examining the effect of 4 h transport on surge and pulsatile LH secretion in intact ewes and ovariectomized ewes treated with steroids to induce an artificial follicular phase (model ewes). Transport caused a greater delay in the onset of the LH surge in nine intact ewes than it did in ten ovariectomized ewes (intact: 41.0 +/- 0.9 h versus 48.3 +/- 0.8 h, P < 0.02; ovariectomized model: 40.8 +/- 0.6 h versus 42.6 +/- 0.5 h, P < 0.02). Disruption of the hypothalamus-pituitary endocrine balance in intact ewes may have reduced gonadotrophin stimulation of follicular oestradiol production which had an additional effect on the LH surge mechanism. In the ovariectomized model ewes, this effect was masked by the exogenous supply of oestradiol. However, in these model ewes, there was a greater suppression of maximum LH surge concentrations (intact controls: 29 +/- 4 ng ml-1 versus intact transported 22 +/- 5 ng ml-1, P < 0.02; ovariectomized model controls: 35 +/- 7 ng ml-1 versus model transported 15 +/- 2 ng ml-1, P < 0.02). Subsequent exposure to progesterone for 12 days resulted in the resumption of a normal LH profile in the next follicular phase, indicating that acute stress leads to a temporary endocrine lesion. In four intact ewes transported in the mid-follicular phase, there was a suppression of LH pulse amplitude (0.9 +/- 0.3 versus 0.3 +/- 0.02 ng ml-1, P < 0.05) but a statistically significant effect on pulse frequency was not observed (2.0 +/- 0.4 versus 1.7 +/- 0.6 pulses per 2 h). In conclusion, activation of the hypothalamus-pituitary-adrenal axis by transport in the follicular phase of intact ewes interrupts surge secretion of LH, possibly by interference with LH pulsatility and, hence, follicular oestradiol production. This disruption of gonadotrophin secretion will have a major impact on fertility.  相似文献   

6.
In two experiments carried out during seasonal anoestrus, Romney Marsh ewes were treated with small-dose (250 ng) multiple injections of GnRH at 2-h intervals with and without progesterone pretreatment. In Exp. 1, 8/8 progesterone-primed ewes ovulated and produced functionally normal corpora lutea compared with 2/9 non-primed ewes. Follicles were recovered from similarly treated animals 18 or 28 h after the start of GnRH treatment (at least 14 h before the estimated time of the LH peak) and assessed in terms of diameter, granulosa cell number, oestradiol, testosterone and progesterone concentrations in the follicular fluid, oestradiol production in vitro and binding of 125I-labelled hCG to granulosa and theca. There were no significant differences in any of these measures in 'ovulatory' follicles recovered from the progesterone-pretreated compared to non-pretreated animals. In Exp. 2, follicles were removed from similar treatment groups just before and 2 h after the start of the LH surge. Unlike 'ovulatory' follicles recovered from the non-pretreated ewes, those recovered from progesterone-pretreated ewes responded to the LH surge by significantly increasing oestradiol secretion (P less than 0.01) and binding of 125I-labelled hCG (P less than 0.05) to granulosa cells. Overall there was also more (P less than 0.05) hCG binding to granulosa and theca cells from progesterone-pretreated animals. Non-ovulatory follicles recovered from progesterone-primed ewes had more (P less than 0.05) binding of 125I-labelled hCG to theca and a higher testosterone concentration in follicular fluid (P less than 0.05) than did those from non-primed ewes. These results suggest that inadequate luteal function after repeated injections of GnRH may be due to a poor response to the LH surge indicative of a deficiency in the final maturational stages of the follicle.  相似文献   

7.
Transrectal ovarian ultrasonography was conducted in six Western white-faced ewes for 35 days from the last oestrus of the breeding season, to record the number and size of all ovarian follicles > or = 3 mm in diameter and luteal structures. Blood samples were collected once a day for estimation of serum concentrations of follicle-stimulating hormone (FSH), oestradiol and progesterone. Each ewe had five follicular waves (follicles growing from 3 to > or = 5 mm in diameter) over the scanning period. The duration of the growth phase of the largest ovarian follicles did not differ (P > 0.05) between waves, but follicular static and regressing phases decreased significantly (P < 0.05) after the decline in serum progesterone concentrations at the end of the last luteal phase of the breeding season. The intervals between the five follicular waves were: 9.2+/-0.4, 5.2+/-0.7, 8.3+/-0.8 and 5.8+/-0.7 days; the two shorter intervals differed (P < 0.05) from the two longer intervals. Using the cycle-detection program, rhythmic increases in serum FSH concentrations were detected in all ewes; the amplitude, duration and periodicity of FSH fluctuations did not vary (P > 0.05) throughout the period of study. The number of identified FSH peaks (7.8+/-0.5 peaks per ewe, per scanning period) was greater (P < 0.05) than the number of emerging follicular waves. Serum concentrations of oestradiol remained low (< or = 1 pg/ml) on most days, in five out of the six ewes studied, and sporadic elevations in oestradiol secretion above the non-detectable level were not associated with the emergence of follicular waves. The ovulation rate was lower than that seen during the middle portion of the breeding season (November-December) in white-faced ewes but the transitional ewes had larger corpora lutea (CL). Maximal serum concentrations of progesterone appeared to be lower and the plateau phase of progesterone secretion appeared to be shorter during the last luteal phase of the ovulatory season in comparison to the mid-breeding season of Western white-faced ewes. During the transition into anoestrus in ewes, the endogenous rhythm of FSH release is remarkably robust but the pattern of emergence of sequential follicular waves is dissociated from FSH and oestradiol secretion. Luteal progesterone secretion is suppressed because of fewer ovulations and diminished total luteal volume, but it may also result from diminished gonadotropic support. These season-related alterations in the normal pattern of ovine ovarian cycles appear to be due to reduction in ovarian responsiveness to gonadotropins and/or attenuation in secretion of luteinizing hormone (LH) occurring at the onset of the anovulatory season in ewes.  相似文献   

8.
Pulsatile secretion of progesterone has been observed during the late luteal phase of the menstrual cycle in the rhesus monkey and human. As the luteal phase progresses in each of these species, there is a pattern of decreased frequency and increased amplitude of progesterone pulses. The present study was designed to determine the pattern of progesterone secretion during the late luteal phase (Days 10-16) of the normal ovine estrous cycle. Five unanesthetized ewes, each bearing an indwelling cannula in the utero-ovarian vein, were bled every 15 min from 0800 h on Day 10 through 0800 h on Day 16 of the estrous cycle. With the computer program PULSAR, it was determined that progesterone secretion was episodic, with pulsations observed on all days. Analysis of variance was used to determine differences in frequency, amplitude, and interpeak interval (IPI) of progesterone pulses among ewes and days. The ewes averaged 8.0 +/- 0.63 pulses of progesterone per 24 h. Mean frequency of pulses was not different between days but showed differences between ewes. Mean amplitude of progesterone pulses was 7.0 +/- 0.27 ng/ml, with no differences observed either between days or between ewes. Mean IPI was 197 +/- 7.1 min, and, like frequency, the IPI was not different between days, but varied between ewes. No consistent temporal relationship was found between progesterone pulses and luteinizing hormone (LH), as determined by bioassay and radioimmunoassay, on Day 14 of the cycle in one ewe. The results indicate that progesterone secretion is episodic during the luteal phase of the ovine estrous cycle and is independent of LH pulses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Changes in the secretion of LH during the oestrous cycle were studied in 5 tame Père David's deer in which ovulation was synchronized with progesterone implants and prostaglandin injections. Plasma LH concentrations were measured in samples collected at 15-min intervals for a 36-h period, starting 16 h after the removal of the progesterone implants (follicular phase), and for a further 10-h period 10 days after the removal of the progesterone implants (luteal phase). In all animals, there was a preovulatory surge of LH and behavioural oestrus which occurred at a mean time of 59.6 h (+/- 3.25) and 69 h respectively following implant removal. LH pulse frequency was significantly higher during the follicular phase (0.59 +/- 0.03 pulses/h) than the luteal phase (0.24 +/- 0.2 pulses/h), thus confirming in deer findings from research on domesticated ruminants. There were no significant differences between the follicular and luteal phases in mean plasma LH concentrations (0.57 +/- 0.09 and 0.74 +/- 0.13 ng/ml) or mean pulse amplitude (0.99 +/- 0.14 and 1.05 +/- 0.21 ng/ml) for the follicular and luteal phase respectively. The long interval from the removal of progesterone to the onset of the LH surge and the absence of a significant difference in mean LH concentration or pulse amplitude in the follicular and luteal phases resemble published data for cattle but differ from sheep in which there is a short interval from luteal regression to the onset of the surge and a marked increase in LH pulse amplitude during the luteal phase.  相似文献   

10.
To characterize the changes in LH pulse frequency during the transition to breeding season. LH pulse patterns and serum progesterone profiles were determined in 8 intact ewes from mid-anoestrus to the early breeding season. Overall, 8 increases in LH pulse frequency were observed and these were restricted to 5 ewes. Of the 8 increases, 7 occurred during the 4 weeks before the first cycle, 5 of them within 1 week after a pulse frequency typical of anoestrus (0-2 per 8 h). Six of them occurred less than 1 week before either a full-length luteal phase (n = 2) or a 1-3-day increment in progesterone (n = 4). Seven of these brief progesterone increases were observed in 6 ewes, 5 of them immediately preceding the first full-length luteal phase. These results are consistent with the hypothesis that the seasonal decrease in response to oestradiol negative feedback at the beginning of the breeding season causes an increase in GnRH, and thereby LH pulse frequency. In addition, they demonstrate that the first increase in tonic LH secretion occurs in less than 1 week and, in most ewes, initiates either the first full-length cycle or a transient increase in progesterone, the latter occurring more often.  相似文献   

11.
Implants of progesterone on the day of dioestrus II in the hamster induced on the following day an increase in circulating levels of progesterone (6.0 +/- 0.7 ng/ml, N = 8; sesame oil controls, less than 0.5 ng/ml, N = 6) and a decline in serum levels of LH (5.3 +/- 0.4 ng/ml; controls 12 +/- 2 ng/ml) and oestradiol (10 +/- 2 pg/ml; controls 69 +/- 5 pg/ml). The production of androstenedione and oestradiol by antral follicles in vitro was reduced in progesterone-treated hamsters when compared with controls, but progesterone production was not affected. Aromatizing activities of antral follicles were the same in progesterone-treated and sesame oil-treated hamsters. Androstenedione production by theca was significantly less in progesterone-treated hamsters than in controls. On dioestrus II, LH replacement therapy (200 micrograms ovine LH by osmotic minipump inserted s.c.) prevented the decline in follicular androstenedione and oestradiol production induced by progesterone alone, and also prevented the decline in thecal androstenedione production in vitro. The results indicate that exogenous progesterone on dioestrus II lowers circulating levels of LH by the following day, inhibits thecal androstenedione production and thus reduces follicular oestradiol production without alteration in aromatizing ability.  相似文献   

12.
The effects of progesterone on the responses of Merino ewes to the introduction of rams during anoestrus were investigated in two experiments. In the first experiment, the introduction of rams induced an increase in the levels of LH in entire ewes. The mean levels increased from 0.68 +/- 0.04 ng/ml (mean +/- s.e.m.) to 4.49 +/- 1.32 ng/ml within 20 min in ewes not treated with progesterone (n = 10). In ewes bearing progesterone implants that provided a peripheral concentration of about 1.5 ng progesterone per millilitre plasma, the LH response to the introduction of rams was not prevented, but was reduced in size so that the concentration was 1.38 +/- 0.15 ng/ml after 20 min (n = 5). Progesterone treatment begun either 2 days before or 6 h after the introduction of rams and maintained for 4 days prevented ovulation. In the second experiment ovariectomized ewes were used to investigate further the mechanism by which the ram evoked increases in tonic LH secretion. In ovariectomized ewes treated with oestradiol implants, the introduction of rams increased the frequency of the LH pulses and the basal level of LH. In the absence of oestradiol there was no significant change in pulse frequency but a small increase in basal levels. Progesterone again did not prevent but reduced the responses in ewes treated with oestradiol. It is suggested that following the withdrawal of progesterone treatment, the secretion of LH pulses in response to the ram effect would be dampened. This effect could be a component of the reported long delay between the introduction of rams and the preovulatory surge of LH in ewes treated with progesterone. Continued progesterone treatment prevented ovulation, probably by blocking positive feedback by oestradiol.  相似文献   

13.
The effect of sustained high plasma levels of prolactin, induced by repeated 2-h i.v. injections of thyrotrophin-releasing hormone (TRH; 20 micrograms), on ovarian oestradiol secretion and plasma levels of LH and FSH was investigated during the preovulatory period in the ewe. Plasma levels of progesterone declined at the same rate after prostaglandin-induced luteal regression in control and TRH-treated ewes. However, TRH treatment resulted in a significant increase in plasma levels of LH and FSH compared to controls from 12 h after luteal regression until 5 to 6 h before the start of the preovulatory surge of LH. In spite of this, and a similar increase in pulse frequency of LH in control and TRH-treated ewes, ovarian oestradiol secretion was significantly suppressed in TRH-treated ewes compared to that in control ewes. The preovulatory surge of LH and FSH, the second FSH peak and subsequent luteal function in terms of plasma levels of progesterone were not significantly different between control and TRH-treated ewes. These results show that TRH treatment, presumably by maintaining elevated plasma levels of prolactin, results in suppression of oestradiol secretion by a direct effect on the ovary in the ewe.  相似文献   

14.
To determine whether the first LH surge of the breeding season initiates a transient rise in progesterone in most ewes, serum progesterone (daily) and LH (every 4 h) concentrations were measured in samples collected from 7 ewes between 19 July and first oestrus or 8 September, whichever came first. In 6 of the 7 ewes, the first LH surge of the breeding season was followed within 5 days by a transient, 2-day rise in progesterone. Within less than 5 (N = 4), or 9 (N = 1) or 10 (N = 1) days later, a second LH surge occurred, which was similar in maximum amplitude and duration to the first surge, and which initiated the first full-length luteal phase of the breeding season. In the remaining ewe, the first LH surge of the breeding season induced an abbreviated (9 days) and insufficient (maximum progesterone, 0.94 ng/ml) luteal phase. These results demonstrate that most ewes have more than one LH surge before the first full-length luteal phase, the first surge inducing a transient rise in progesterone. Therefore, although the seasonal decrease in response to oestradiol negative feedback is sufficient for initiation of the first LH surge of the breeding season, additional endocrine mechanisms may be necessary to induce the first full-length luteal phase.  相似文献   

15.
The effects of active immunization against progesterone on reproductive activity were studied in Merino ewes. Immunization against progesterone caused a shortening (P less than 0.01) of the interval between ovulations from 17-18 days (controls) to between 6 and 10 days (immunized group); this was associated with a corresponding reduction in the interval between LH surges. The immunized ewes also had higher (P less than 0.05) ovulation rates (1.72) than controls (1.25) and exhibited a reduced (P less than 0.01) incidence of oestrus (26% v. 95%). Many immunized ewes continued to ovulate despite the persistence of corpora lutea from earlier ovulations which led to an accumulation on the ovaries of many corpora lutea of different ages. The frequency of LH pulses in ewes immunized against progesterone (1.8 +/- 0.2 pulses/4 h) was significantly (P less than 0.001) higher than that of control ewes (0.3 +/- 0.1 pulses/4 h). This study highlights the importance of progesterone in the control of oestrus, ovulation, ovulation rate, luteal regression and the secretion of LH in the ewe.  相似文献   

16.
Plasma concentrations of LH, FSH and oestradiol-17 beta were measured in blood samples taken at 15 min intervals for 48 h during the follicular phase of four Merino ewes. The amplitude of pulses of LH and the mean concentration of LH were higher at the beginning of the follicular phase, 36-24 h before the preovulatory surge of LH (amplitude 2.4 ng ml-1, mean concentration 3.9 ng ml-1), than at the end, 24-0 h before the preovulatory surge (amplitude 1.2 +/- 0.1 ng ml-1; mean concentration 1.4 +/- 0.1 ng ml-1). There was no change in the inter-pulse interval during this time (mean 74 +/- 5 min). Over the same period, oestradiol levels increased from 7-8 pg ml-1 to a peak of 10-15 pg ml-1. Mean FSH concentrations declined (36-24 h: 3.6 ng ml-1 vs 24-0 h: 1.8 +/- 0.3 ng ml-1) before rising at the time of the preovulatory surge of LH and again 24 h later. It was concluded that the biphasic response of LH to oestrogen that is seen in ovariectomized ewes may also operate during the follicular phase of the oestrous cycle in entire ewes.  相似文献   

17.
In Exp. 1, 7 Finn-Merino ewes which had one ovary autotransplanted to a site in the neck had jugular and timed ovarian venous blood samples collected at 10-min intervals for 2 h before and 3 h after injection of 5 micrograms NIAMDD-oFSH-S16. In Exp. 2, 8 Finn-Merino ewes with ovarian autotransplants had jugular and timed ovarian venous blood samples collected at 15-min intervals for 2 h before and 12 h after bolus injection of 40 micrograms NIAMDD-oFSH-S16 and infusion of oFSH-S16 at 6 micrograms/min for 4 h. In Exp. 2 the follicular population of the ovary was assessed by real-time ultrasound at the beginning and end of the experimental period. In both experiments the secretion rates of inhibin (1-3 ng/min) and oestradiol (0.5-8 ng/min) were similar to those observed during the luteal phase of the cycle in the breeding season, indicating significant follicular development in these animals. In Exp. 1 there was no change in the secretion of oestradiol or inhibin after the injection of FSH which resulted in a 25% increase (P less than 0.05) in the concentration of FSH in plasma. Inhibin secretion was pulsatile but there was no difference in inhibin pulse frequency before (1.6 +/- 0.2 pulses/h) or after (1.2 +/- 0.5 pulses/h) injection of FSH. In Exp. 2 injection of FSH resulted in an increase (P less than 0.001) in plasma concentrations of FSH in the sample taken 10 min after injection from a baseline of 1.2 +/- 0.2 ng/ml to a peak of 10.6 +/- 1.0 ng/ml (mean +/- s.e.m.).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Four cows released an LH surge after 1.0 mg oestradiol benzoate administered i.m. during the post-partum anoestrous period with continuing low plasma progesterone. A similar response occurred in the early follicular phase when plasma progesterone concentration at the time of injection was less than 0.5 ng/ml. Cows treated with a progesterone-releasing intravaginal device (PRID) for 8 days were injected with cloprostenol on the 5th day to remove any endogenous source of progesterone. Oestradiol was injected on the 7th day when the plasma progesterone concentration from the PRID was between 0.7 and 1.5 ng/ml. No LH surge occurred. Similarly, oestradiol benzoate injected in the luteal phase of 3 cows (0.9-2.1 ng progesterone/ml plasma) did not provoke an LH surge. An oestradiol challenge given to 3 cows 6 days after ovariectomy induced a normal LH surge in each cow. However, when oestradiol treatment was repeated on the 7th day of PRID treatment, none released LH. It is concluded that ovaries are not necessary for progesterone to inhibit the release of LH, and cows with plasma progesterone concentrations greater than 0.5 ng/ml, whether endogenous or exogenous, did not release LH in response to oestradiol.  相似文献   

19.
Treatment of ewes with steroid-free ovine follicular fluid (oFF) during the follicular phase of the oestrous cycle results in the immediate inhibition of the ovarian secretion of oestradiol, inhibin and androgens. An experiment was conducted to determine whether this effect of oFF was due to inhibin, or to direct inhibition of ovarian function by other factors in oFF. Eight ewes in which the left ovary and vascular pedicle had been autotransplanted to a site in the neck were studied during the breeding season. Luteal regression was induced in all animals by injection of cloprostenol (100 micrograms i.m.; PG) on Day 10 of the luteal phase. The animals were divided into two groups (n = 4) and treated with either steroid-free oFF (oFF; 3 ml s.c.; 3.2 microgram p1-26 alpha inhibin/ml) or steroid-free oFF in which the inhibin content had been reduced by greater than 90% (IFoFF; 3 ml s.c.; 0.3 microgram p1-26 alpha inhibin/ml) by affinity chromatography, 24 and 36 h after PG. Samples of ovarian and jugular venous blood were collected at (i) intervals of 4 h from 16 h before until 120 h after PG and (ii) intervals of 10 min from 48 to 52 h after injection of PG to investigate the pattern of pulsatile secretion of ovarian hormones. All ewes had previously been monitored during a normal PG-induced follicular phase. Injection of oFF resulted in an increase (P less than 0.05) in the concentration of inhibin in jugular venous plasma and a profound (P less than 0.001) and prolonged decrease in the peripheral concentration of follicle-stimulating hormone (FSH). Injection of IFoFF had no significant effect on peripheral concentrations of inhibin or FSH in the first 24 h after treatment; thereafter inhibin concentrations fell (P less than 0.01) progressively until 40 h and then increased (P less than 0.01) until 72 h after treatment. In both treatment groups, however, within 24-36 h of treatment the concentration of FSH increased 5-10-fold (P less than 0.001) to a peak that occurred within 48-60 h and then declined to basal concentrations within 72-84 h of treatment. The concentration of luteinizing hormone (LH) in jugular venous plasma increased in both groups after treatment (P less than 0.01), although the rise after injection of oFF only started after 24 h. Thereafter, there was a progressive increase in the concentration of LH, peaks occurring 48-60 h after treatment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Progesterone secretion has been observed to be episodic in the late luteal phase of the oestrous cycle of ewes and is apparently independent of luteinizing hormone (LH). This study investigated the effects of suppressing the pulsatile release of LH in the early or late luteal phase on the episodic secretion of progesterone. Six Scottish Blackface ewes were treated i.m. with 1 mg kg-1 body weight of a potent gonadotrophin-releasing hormone (GnRH) antagonist on either day 4 or day 11 of the luteal phase. Six ewes received saline at each time and acted as controls. Serial blood samples were collected at 10 or 15 min intervals between 0 and 8 h, 24 and 32 h, and 48 and 56 h after GnRH antagonist treatment and daily from oestrus (day 0) of the treatment cycle for 22 days. Oestrous behaviour was determined using a vasectomized ram present throughout the experiment. Progesterone secretion was episodic in both the early and late luteal phase with a frequency of between 1.6 and 3.2 pulses in 8 h. The GnRH antagonist abolished the pulsatile secretion and suppressed the basal concentrations of LH for at least 3 days after treatment. This suppression of LH, in either the early or late luteal phase, did not affect the episodic release of progesterone. Daily concentrations of progesterone in plasma showed a minimal reduction on days 11 to 14 after GnRH antagonist treatment on day 4, although this was significant (P < 0.05) only on days 11 and 13. There was no effect of treatment on day 11 on daily progesterone concentration, and the timing of luteolysis and the duration of corpus luteum function was unaffected by GnRH antagonist treatment on either day 4 or day 11. These results indicate that the episodic secretion of progesterone during the luteal phase of the oestrous cycle in ewes is independent of LH pulses and normal progesterone secretion by the corpus luteum can be maintained with minimal basal concentrations of LH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号