首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA clone for the mouse 46-kDa mannose 6-phosphate receptor (MPR 46) was isolated from an embryonic mouse cDNA library. Its single open reading frame codes for a protein of 278 residues. It shows an over-all amino-acid identity of 93% with the human receptor. Nine non-conservative amino-acid exchanges are found in the luminal domain, one non-conservative exchange of hydrophobic amino acids is in the transmembrane domain, while the cytoplasmic receptor tails are identical. All five potential N-glycosylation sites are conserved as well as amino acids that are important for ligand binding (Arg 137 and His 131) and disulfide pairing (Cys 32 and 78, Cys 132 and Cys 167, Cys 145 and Cys 179). The absolute identity in the cytoplasmic MPR 46 tail suggests the importance of this amino-acid sequence for the intracellular routing of the MPR 46.  相似文献   

2.
The trafficking of the cation-independent mannose 6-phosphate receptor between the trans-Golgi network and endosomes requires binding of sorting determinants in the cytoplasmic tail of the receptor to adaptor protein complex-1 (AP-1). Using a GST pull-down binding assay, four binding motifs were identified in the cytoplasmic tail: a tyrosine-based motif ((26)YSKV(29)), an internal dileucine-based motif ((39)ETEWLM(44)), and two casein kinase 2 sites ((84)DSEDE(88) and (154)DDSDED(159)). The YSKV motif mediated the strongest interaction with AP-1 and the two CK2 motifs bound AP-1 only when they were phosphorylated. The COOH-terminal dileucines were not required for interaction with AP-1.  相似文献   

3.
4.
The quaternary structure and binding activity of the murine 46-kDa mannose 6-phosphate receptor (46MPR) were studied in semi-intact murine cells that overexpress the murine receptor. Chemical cross-linking studies showed that the murine 46MPR exists in monomer, dimer, and tetramer forms in membranes of overexpressing murine cells. Treatment of permeabilized cells with Mn2+ increased the tetramer form of 46MPR, and this tetramerization was reversed by removal of Mn2+. Thus, the divalent cations affected the distribution of receptor among the three forms, favoring tetramerization at the expense of dimer and monomer. Low temperature (4 degrees C) also increases the fraction present as tetramer. The binding assay results show that Mn2+ is required for the 46MPR to achieve and retain the ability to bind ligand at 37 degrees C but not at 4 degrees C. Preincubation with Mn2+ produced a 3-fold increase in Man-6-P-specific binding of beta-glucuronidase which paralleled the 3-fold increase in tetramer seen during preincubation with Mn2+. The similarity of the effects of addition and removal of Mn2+ on enzyme binding to the effects of Mn2+ on favoring tetramer formation suggests that divalent cation-dependent tetramerization of the 46MPR contributes to the stimulation of ligand binding to the 46MPR by divalent cations.  相似文献   

5.
We have isolated cDNA clones encoding the entire sequence of the bovine 46 kd cation-dependent mannose 6-phosphate (CD Man-6-P) receptor. Translation of CD Man-6-P receptor mRNA in Xenopus laevis oocytes results in a protein that binds specifically to phosphomannan-Sepharose, thus demonstrating that our cDNA clones encode a functional receptor. The deduced 279 amino acid sequence reveals a single polypeptide chain that contains a putative signal sequence and a transmembrane domain. Trypsin digestion of microsomal membranes containing the receptor and the location of the five potential N-linked glycosylation sites indicate that the receptor is a transmembrane protein with an extracytoplasmic amino terminus. This extracytoplasmic domain is homologous to the approximately 145 amino acid long repeating domains present in the 215 kd cation-independent Man-6-P receptor.  相似文献   

6.
We have cloned and sequenced the 2175-nucleotide, full-length cDNA for the mouse 46-kDa Man 6-P receptor (46MPR) and studied its functional properties in stably transfected mouse L cells which do not express the insulin-like growth factor-II receptor/mannose 6-phosphate receptor (IGF-IIR/MPR). The 278-amino acid sequence deduced from the cDNA for the murine 46MPR shows 19 amino acid differences from that of the human 46MPR, none of which are found in the 68-amino acid cytoplasmic tail. Binding of ligand to the murine 46MPR in permeabilized cells showed a pH optimum of 6.5, was completely inhibited by Man 6-P, and was stimulated by divalent cations. Mn2+ was more effective than Ca2+ or Mg2+. Endocytosis was demonstrated at pH 6.5 and was stimulated 4-7-fold by Mn2+. In its responsiveness to divalent cations and its preference for Mn2+, the murine 46MPR resembled the bovine 46MPR more than the human 46MPR. It was even less efficient than the human receptor in its ability to mediate endocytosis in transfected murine cells. It was also no more efficient than the human 46MPR in correcting the sorting defect of IGF-IIR/MPR-deficient mouse L cells. We conclude that the previously observed relative inefficiency of the human 46MPR in sorting enzymes to lysosomes in murine cells is a property of the 46MPR itself and not a manifestation of studying its expression in a heterologous cell line.  相似文献   

7.
Sun G  Zhao H  Kalyanaraman B  Dahms NM 《Glycobiology》2005,15(11):1136-1149
The 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) plays an essential role in the biogenesis of lysosomes by diverting newly synthesized mannose 6-phosphate (Man-6-P)-containing lysosomal enzymes from the secretory pathway to acidified endosomes. Previous crystallographic studies of the CD-MPR have identified 11 amino acids within its carbohydrate binding pocket. These residues were evaluated quantitatively by assaying the binding affinity of mutant receptors containing a single amino acid substitution toward a lysosomal enzyme. The results show that substitution of Gln-66, Arg-111, Glu-133, or Tyr-143 results in a >800-fold decrease in affinity, demonstrating these four amino acids are essential for carbohydrate recognition by the CD-MPR. Solution binding and surface plasmon resonance analyses demonstrated that the presence of Mn2+ enhanced the affinity of the CD-MPR for a lysosomal enzyme by 2- to 4-fold and increased the stoichiometry of the interaction between a heterogeneous population of a lysosomal enzyme and the receptor by approximately 3-fold. In contrast, substitution of Asp-103 results in a protein that no longer exhibits enhanced binding affinities or altered stoichiometry in the presence of cations, and electron spin resonance demonstrated that the D103S mutant exhibits a 6-fold lower affinity for Mn2+ than the wild-type receptor (Kd = 3.7 6 1.4 mM versus 0.6 6 0.1 mM). Chemical cross-linking revealed that Mn2+ influences the stoichiometry of interaction between the CD-MPR and lysosomal enzymes by increasing the oligomeric state of the receptor from dimer to higher order oligomers. Taken together, these studies provide the molecular basis for high affinity carbohydrate recognition by the CD-MPR. Furthermore, Asp-103 has been identified as the key residue which mediates the effects of divalent cations on the binding properties of the CD-MPR.  相似文献   

8.
The structural requirements for oligomerization and the generation of a functional mannose 6-phosphate (Man-6-P) binding site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) were analyzed. Chemical cross-linking studies on affinity-purified CD-MPR and on solubilized membranes containing the receptor indicate that the CD-MPR exists as a homodimer. To determine whether dimer formation is necessary for the generation of a Man-6-P binding site, a cDNA coding for a truncated receptor consisting of only the signal sequence and the extracytoplasmic domain was constructed and expressed in Xenopus laevis oocytes. The expressed protein was completely soluble, monomeric in structure, and capable of binding phosphomannosyl residues. Like the dimeric native receptor, the truncated receptor can release its ligand at low pH. Ligand blot analysis using bovine testes beta-galactosidase showed that the monomeric form of the CD-MPR from bovine liver and testes is capable of binding Man-6-P. These results indicate that the extracytoplasmic domain of the receptor contains all the information necessary for ligand binding as well as for acid-dependent ligand dissociation and that oligomerization is not required for the formation of a functional Man-6-P binding site. Several different mutant CD-MPRs were generated and expressed in X. laevis oocytes to determine what region of the receptor is involved in oligomerization. Chemical cross-linking analyses of these mutant proteins indicate that the transmembrane domain is important for establishing the quaternary structure of the CD-MPR.  相似文献   

9.
The interaction of the bovine cation-independent mannose 6-phosphate receptor with a variety of phosphorylated ligands has been studied using equilibrium dialysis and immobilized receptor to measure ligand binding. The dissociation constants for mannose 6-phosphate, pentamannose phosphate, bovine testes beta-galactosidase, and a high mannose oligosaccharide with two phosphomonoesters were 7 X 10(-6) M, 6 X 10(-6) M, 2 X 10(-8) M, and 2 X 10(-9) M, and the mol of ligand bound/mol of receptor monomer were 2.17, 1.85, 0.9, and 1.0, respectively. We conclude that the cation-independent mannose 6-phosphate receptor has two mannose 6-phosphate-binding sites/polypeptide chain.  相似文献   

10.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.  相似文献   

11.
Type I interferons (IFNs) elicit antiviral, antiproliferative and immunomodulatory properties in cells. All of them bind to the same receptor proteins, IFNAR1 and IFNAR2, with different affinities. While the 13 known IFNalphas are highly conserved, the C-terminal unstructured tail was found to have large variation in its net charge, from neutral to +4. This led us to speculate that the tail may have a role in modulation of the IFN biological activity, through fine-tuning the binding to IFNAR2. To evaluate this hypothesis, we replaced the tail of IFNalpha2 with that of IFNalpha8 and IFNbeta tails, or deleted the last five residues of this segment. Mutations to the more positively charged tail of IFNalpha8 resulted in a 20-fold higher affinity to IFNAR2, which results in a higher antiviral and antiproliferative activity. Double and multiple mutant cycle analysis placed the tail near a negatively charged loop on IFNAR2, comprising of residues Glu 132-134. Deleting the tail resulted in only twofold reduction in binding compared to the wild-type. Next, we modeled the location of the tail using a two-step procedure: first we generated 200 models of the tail docked on IFNAR2 using HADDOCK, second the models were scored according to the fit between experimentally determined rates of association of nine mutant complexes, and their calculated rates using the PARE software. From the results we suggest that the unstructured tail of IFNalpha is gaining a specific structure in the bound state, binding to a groove below the 132-134 loop in IFNAR2.  相似文献   

12.
The interactions of the bovine cation-dependent mannose 6-phosphate receptor with monovalent and divalent ligands have been studied by equilibrium dialysis. This receptor appears to be a homodimer or a tetramer. Each mole of receptor monomer bound 1.2 mol of the monovalent ligands, mannose 6-phosphate and pentamannose phosphate with Kd values of 8 X 10(-6) M and 6 X 10(-6) M, respectively and 0.5 mol of the divalent ligand, a high mannose oligosaccharide with two phosphomonoesters, with a Kd of 2 X 10(-7) M. When Mn2+ was replaced by EDTA in the dialysis buffer, the Kd for pentamannose phosphate was 2.5 X 10(-5) M. By measuring the affinity of the cation-dependent and cation-independent mannose 6-phosphate receptors for a variety of mannose 6-phosphate analogs, we conclude that the 6-phosphate and the 2-hydroxyl of mannose 6-phosphate each contribute approximately 4-5 kcal/mol of Gibb's free energy to the binding reaction. Neither receptor appears to interact substantially with the anomeric oxygen of mannose 6-phosphate. The receptors differ in that the cation-dependent receptor displays no detectable affinity for N-acetylglucosamine 1'-(alpha-D-methylmannopyranose 6-monophosphate) whereas this ligand binds to the cation-independent receptor with a poor, but readily measurable Kd of about 0.1 mM. The spacing of the mannose 6-phosphate-binding sites relative to each other may also differ for the two receptors.  相似文献   

13.
The GTP-binding protein ADP-ribosylation factor (ARF) initiates clathrin-coat assembly at the trans-Goli network (TGN) by generating high-affinity membrane-binding sites for the AP-1 adaptor complex. Both transmembrane proteins, which are sorted into the assembling coated bud, and novel docking proteins have been suggested to be partners with GTP-bound ARF in generating the AP-1-docking sites. The best characterized, and probably the major transmembrane molecules sorted into the clathrin-coated vesicles that form on the TGN, are the mannose 6-phosphate receptors (MPRs). Here, we have examined the role of the MPRs in the AP-1 recruitment process by comparing fibroblasts derived from embryos of either normal or MPR-negative animals. Despite major alterations to the lysosome compartment in the MPR-deficient cells, the steady-state distribution of AP-1 at the TGN is comparable to that of normal cells. Golgi-enriched membranes prepared from the receptor-negative cells also display an apparently normal capacity to recruit AP-1 in vitro in the presence of ARF and either GTP or GTPgammaS. The AP-1 adaptor is recruited specifically onto the TGN and not onto the numerous abnormal membrane elements that accumulate within the MPR-negative fibroblasts. AP-1 bound to TGN membranes from either normal or MPR-negative fibroblasts is fully resistant to chemical extraction with 1 M Tris-HCl, pH 7, indicating that the adaptor binds to both membrane types with high affinity. The only difference we do note between the Golgi prepared from the MPR-deficient cells and the normal cells is that AP-1 recruited onto the receptor-lacking membranes in the presence of ARF1.GTP is consistently more resistant to extraction with Tris. Because sensitivity to Tris extraction correlates well with nucleotide hydrolysis, this finding might suggest a possible link between MPR sorting and ARF GAP regulation. We conclude that the MPRs are not essential determinants in the initial steps of AP-1 binding to the TGN but, instead, they may play a regulatory role in clathrin-coated vesicle formation by affecting ARF.GTP hydrolysis.  相似文献   

14.
Synthesis of the cation-dependent mannose 6-phosphate-specific receptor was followed in cells of human (fibroblasts, Hep G2 cells, U937 monocytes, blood-derived macrophages) or rat (Morris hepatoma 7777 cells) origin. The mature form of the receptor has an apparent molecular size of 46 kDa except in fibroblasts, where the apparent molecular size was 43 kDa. The receptor contains 7-8 N-linked oligosaccharide chains, about 5 of which are converted into endo H-resistant forms within 2 h of synthesis. A small fraction of the receptor (about 3% of total in U937 monocytes) is located at the cell surface while the bulk of the receptor resides in internal membranes. Part of the internal receptors (20% in fibroblasts) resides in membranes of the endocytic pathway. The receptor was not detectable in dense lysosomes. The receptor is a hydrophobic transmembrane protein partitioning with Triton X-114. The cytosolic portion of the receptor comprises a molecular size of about 5 kDa and contains the C-terminus. The luminal (or external) portion of the receptor comprises a molecular size of greater than or equal to 37.5 kDa, of which more than half is represented by carbohydrate. Cross-linking experiments suggest that the mature receptor exists in membranes as a dimer.  相似文献   

15.
Up to 4% of the human 46-kDa mannose 6-phosphate receptor (MPR46) expressed in Madin-Darby canine kidney (MDCK) cells are localized at the cell surface. At steady state, the expression of MPR46 on the apical surface of filter-grown MDCK cells is about sixfold lower than on the basolateral surface. The cytoplasmic domain of the MPR46 is phosphorylated on serine 56 at low stoichiometry. By expressing mutant MPR46 we have shown that the MPR46 phosphorylation site is required for delivery to the plasma membrane. In addition, mutant MPR46 expressed in MPR-deficient mouse embryonic fibroblasts were not detected at the cell surface and their ability to sort newly synthesized cathepsin D was not altered. Since the loss of MPR46 phosphorylation correlates with the lack of cell surface expression, phosphorylation of serine 56 may either function as a direct plasma membrane targeting signal or inhibit MPR46 recycling from endosomes to Golgi, resulting in trafficking to the cell surface.  相似文献   

16.
The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) is involved in multiple physiological pathways including targeting of lysosomal enzymes, degradation of IGF2, and cicatrization through TGFbeta activation. To target potential therapeutics to this membrane receptor, four carboxylate analogues of mannose 6-phosphate (M6P) were synthesized. Three of them, two isosteric carboxylate analogues and a malonate derivative, showed a binding affinity for the M6P/IGF2R equivalent to or higher than that of M6P. Contrary to M6P, all these analogues were particularly stable in human serum. Moreover, these derivatives did not present any cytotoxic activity against two human cell lines. These analogues represent a new potential for the lysosomal targeting of enzyme replacement therapy in lysosomal diseases or to prevent the membrane-associated activities of the M6P/IGF2R.  相似文献   

17.
The mannose 6-phosphate receptor and the biogenesis of lysosomes   总被引:122,自引:0,他引:122  
Localization of the 215 kd mannose 6-phosphate receptor (MPR) was studied in normal rat kidney cells. Low levels of receptor were detected in the trans Golgi network, Golgi stack, plasma membrane, and peripheral endosomes. The bulk of the receptor was localized to an acidic, reticular-vesicular structure adjacent to the Golgi complex. The structure also labeled with antibodies to lysosomal enzymes and a lysosomal membrane glycoprotein (lgp120). While lysosome-like, this structure is not a typical lysosome that is devoid of MPRs. The endocytic marker alpha 2 macroglobulin-gold entered the structure at 37 degrees C, but not at 20 degrees C. With prolonged chase, most of the marker was transported from the structure into lysosomes. We propose that the MPR/lgp-enriched structure is a specialized endosome (prelysosome) that serves as an intermediate compartment into which endocytic vesicles discharge their contents, and where lysosomal enzymes are released from the MPR and packaged along with newly synthesized lysosomal glycoproteins into lysosomes.  相似文献   

18.
The extracytoplasmic region of the 270-kDa mannose 6-phosphate/IGF-II receptor is composed of 15 repeating domains and is capable of binding 2 mol of mannose 6-phosphate (Man-6-P). To localize the Man-6-P binding domains, bovine receptor was subjected to partial proteolysis with subtilisin followed by affinity chromatography on pentamannosyl phosphate-agarose. Eleven proteolytic fragments ranging in apparent molecular mass from 53 to 206 kDa were isolated. Sequence analysis of six of the fragments localized their amino termini to either the beginning of domain 1 at the amino terminus of the molecule or the beginning of domain 7, according to the alignment of Lobel et al. (Lobel, P., Dahms, N. M., and Kornfeld, S. (1988) J. Biol. Chem. 263, 2563-2570). The smallest fragment, with an apparent molecular mass of 53 kDa, is predicted to encompass domains 1-3. Another fragment, with an apparent molecular mass of 82 kDa, is predicted to encompass domains 7-10 or 7-11. The Man-6-P binding site contained within domains 1-3 was further defined by expressing truncated forms of the receptor in Xenopus laevis oocytes and assaying their ability to bind phosphomannosyl residues. A soluble polypeptide containing domains 1-3 exhibited binding activity, whereas a polypeptide containing domains 1 and 2 did not. This indicates that domain 3 is a necessary component of one of the Man-6-P binding sites of the receptor.  相似文献   

19.
Mannose 6-phosphate receptors (MPRs) deliver soluble acid hydrolases to the lysosome in higher eukaryotic cells. The two MPRs, the cation-dependent MPR (CD-MPR) and the insulin-like growth factor II/cation-independent MPR, carry out this process by binding with high affinity to mannose 6-phosphate residues found on the N-linked oligosaccharides of their ligands. To elucidate the key amino acids involved in conveying this carbohydrate specificity, site-directed mutagenesis studies were conducted on the extracytoplasmic domain of the bovine CD-MPR. Single amino acid substitutions of the residues that form the binding pocket were generated, and the mutant constructs were expressed in transiently transfected COS-1 cells. Following metabolic labeling, mutant CD-MPRs were tested for their ability to bind pentamannosyl phosphate-containing affinity columns. Of the eight amino acids mutated, four (Gln-66, Arg-111, Glu-133, and Tyr-143) were found to be essential for ligand binding. In addition, mutation of the single histidine residue, His-105, within the binding site diminished the binding of the receptor to ligand, but did not eliminate the ability of the CD-MPR to release ligand under acidic conditions.  相似文献   

20.
Mannose 6-phosphate receptor (MPR 300) protein was earlier affinity purified on phosphomannan gel from the membrane extracts of whole animal acetone powder of a mollusc, unio, in the presence of EDTA (Udaya Lakshmi, Y., Radha, Y., Hille-Rehfeld, A., von Figura, K., and Siva Kumar, N. (1999) Biosci. Rep. 19:403–409). In the present study we demonstrate that the unio also contains the putative mannose 6-phosphate receptor (MPR 46) that can be purified on the same gel in presence of divalent metal ions (10 mM each of calcium, manganese, and magnesium), and in the absence of sodium chloride and at pH 6.5. Chicken and Fish cell MPR 46 proteins were purified under these conditions (Siva Kumar, N., Udaya Lakshmi, Y., Hille-Rehfeld, A., and von Figura, K. (1999) Comp. Biochem. & Physiol. 123B:261–265). The authenticity of the receptor is further confirmed by its ability to react with the MSC1 antibody that is specific for MPR 46 protein. Additional evidence for the presence of MPR 46 in molluscs could be obtained by metabolic labeling of mollusc cells Biomphalaria glabrata (Bg cells) with [35S] methionine and cysteine, and passing the labeled membrane extract on phosphomannan gel (at pH 6.5 and 7.0). On elution with mannose 6-phosphate, followed by immunoprecipitation of the column fractions, we identified the putative MPR 46 protein in the Bg cells. When Bg cell MPR 46 was deglycosylated along with chicken MPR 46 (control) both species yielded a single polypeptide corresponding to molecular mass of 26 kDa, suggesting that both contain the same receptor protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号