首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   

2.
The effects of dihydropyridine (1,4-DHP) agonist and antagonists on miniature inhibitory postsynaptic currents (mIPSCs) were investigated in mechanically dissociated rat substantia innominata neurons attached to native GABAergic presynaptic nerve terminals, namely 'synaptic bouton preparation', using nystatin perforated patch recording mode under voltage-clamp conditions. BAY-K 8644 (BAY-K), an L-type Ca(2+) channel agonist, reversibly and concentration dependently facilitated the GABAergic mIPSC frequency without altering the distribution of current amplitudes. Removal of extracellular Ca(2+) completely suppressed the facilitatory effect of BAY-K on mIPSC frequency. The facilitatory effect of BAY-K on mIPSC frequency was maintained even in the presence of selective N-, P- and Q-type Ca(2+) channel antagonists, such as 3 x 10(-6) M omega-conotoxin-GVIA (omega-CgTX-GVIA), 3 x 10(-8) M omega-agatoxin-IVA (omega-AgTX-IVA) and 3 x 10(-6)M omega-conotoxin-MVIIC (omega-CmTX-MVIIC). However, nicardipine (3 x 10(-6) M) and nimodipine (3 x 10(-6) M), 1,4-DHP antagonists, significantly inhibited the mIPSC frequency enhanced by BAY-K by 37 +/- 5 and 42 +/- 6%, respectively. These results suggest the possible existence of L-type Ca(2+) channels in GABAergic presynaptic nerve terminals.  相似文献   

3.
Diabetes mellitus (DM) is an important cardiovascular risk factor and is associated with abnormalities in endothelial and vascular smooth muscle cell function, evoked by chronic hyperglycemia and hyperlipidemia. Chronic insulin deficiency or resistance is marked by decreases in the intensity of glucose transport, glucose phosphorylation, and glucose oxidation, plus decreases in ATP levels in cardiac myocytes. It is important to search for new agents that promote glucose consumption in the heart and partially inhibit extensive fatty acid beta-oxidation observed in diabetic, ischemia. When the oxygen supply for myocardium is decreased, the heart accumulates potentially toxic intermediates of fatty acid beta-oxidation, that is, long-chain acylcarnitine and long-chain acyl-CoA metabolites. Exogenous glucose and heart glycogen become an important compensatory source of energy. Therefore we studied the effect of the antidiabetic 1,4-dihydropyridine compound cerebrocrast at concentrations from 10(-10) M to 10(-7) M on isolated rat hearts using the method of Langendorff, on physiological parameters and energy metabolism. Cerebrocrast at concentrations from 10(-10) M to 10(-7) M has a negative inotropic effect on the rat heart. It inhibits L-type Ca(2+)channels thereby diminishing the cellular Ca(2+) supply, reducing contractile activity, and oxygen consumption, that normally favors enhanced glucose uptake, metabolism, and production of high-energy phosphates (ATP content) in myocardium. Cerebrocrast decreases heart rate and left ventricular (LV) systolic pressure; at concentrations of 10(-10) M and 10(-9) M it evokes short-term vasodilatation of coronary arteries. Increase of ATP content in the myocytes induced by cerebrocrast has a ubiquitous role. It can preserve the integrity of the cell plasma membranes, maintain normal cellular function, and inhibit release of lactate dehydrogenase (LDH) from cells that is associated with diabetes and heart ischemia. Administration of cerebrocrast together with insulin shows that both compounds only slightly enhance glucose uptake in myocardium, but significantly normalize the rate of contraction and relaxation ( +/- dp/dt). The effect of insulin on coronary flow is more pronounced by administration of insulin together with cerebrocrast at a concentration of 10(-7) M. Cerebrocrast may promote a shift of glucose consumption from aerobic to anerobic conditions (through the negative inotropic properties), and may be very significant in prevention of cardiac ischemic episodes.  相似文献   

4.
The goal of the study was to determine whether defects in intracellular Ca(2+) signaling contribute to cardiomyopathy in streptozotocin (STZ)-induced diabetic rats. Depression in cardiac systolic and diastolic function was traced from live diabetic rats to isolated individual myocytes. The depression in contraction and relaxation in myocytes was found in parallel with depression in the rise and decline of intracellular free Ca(2+) concentration ([Ca(2+)](i)). The sarcoplasmic reticulum (SR) Ca(2+) store and rates of Ca(2+) release and resequestration into SR were depressed in diabetic rat myocytes. The rate of Ca(2+) efflux via sarcolemmal Na(+)/Ca(2+) exchanger was also depressed. However, there was no change in the voltage-dependent L-type Ca(2+) channel current that triggers Ca(2+) release from the SR. The depression in SR function was associated with decreased SR Ca(2+)-ATPase and ryanodine receptor proteins and increased total and nonphosphorylated phospholamban proteins. The depression of Na(+)/Ca(2+) exchanger activity was associated with a decrease in its protein level. Thus it is concluded that defects in intracellular Ca(2+) signaling caused by alteration of expression and function of the proteins that regulate [Ca(2+)](i) contribute to cardiomyopathy in STZ-induced diabetic rats. The increase in phospholamban, decrease in Na(+)/Ca(2+) exchanger, and unchanged L-type Ca(2+) channel activity in this model of diabetic cardiomyopathy are distinct from other types of cardiomyopathy.  相似文献   

5.
The effects of Ca2+ antagonists (nicardipine, felodipine, nitrenedipine, isradipine, niphedipine, darodipine and riodipine) and Ca2+ agonists (BAY K8644 and CGP 28392), 1.4-dihydropyridine derivatives (1.2-DHP), on the calmodulin (CM)-dependent activation of cyclic nuxleotide phosphodiesterase (PDE) were studied. Both the blockers and activators of slow potential-dependent Ca2+ channels induced a un-competitive inhibition of the CM-dependent PDE activity. 1.4-DHP was found to replace the fluorescent probe, diS-C3-(5), from the Ca2(+)-dependent calmodulin-dye complex (K0.5 = 4-60 microM) but at concentrations below 100 microM had no effect on the Ca2(+)-dependent troponin C-dye complex. Darodipine (100 microM) did not interact with the proteins. The 1.4-DHP interaction with CM did not interfere with PDE activation. It is concluded that 1.4-DHP may affect Ca2+ dependent processes not only at the levels of activation or blocking of Ca2+ channels, but also through regulation of Ca2(+)-CM dependent enzymes.  相似文献   

6.
Belamcanda chinensis (Iridaceae) belongs to the family of iridaceae and its rhizoma has been widely used for the treatment of throat ailment. Here we report a new pharmacological activity of B. chinensis leaf extract (BCL), that is, the hypoglycemic effect in normal and STZ-induced diabetic rats. Animals either healthy or STZ-induced diabetic show significantly lowered fasting blood glucose levels after treatment with BCL. The serum insulin concentration in normal rats is also enhanced. Additionally, the increase in blood glucose levels after administration of various carbohydrates in normal rats is significantly decreased and the oral glucose tolerance (OGTT) of STZ-induced diabetic rats is largely improved by BCL treatment. However, co-administration of BCL with Nifedipine, a Ca2+ ion channel blocker, or Nicorandil, an ATP-sensitive K+ ion channel opener thoroughly abolishes the hypoglycemic effect of BCL. HPLC analysis and compound identification showed that several isoflavone glycosides with antidiabetic activities were contained in BCL while pharmacological experiment showed that the polysaccharide fraction of BCL had no significant hypoglycemic effect on normal rats. Therefore, the isoflavone glycosides but not polysaccharides might be the active fraction of BCL in diabetes treatment.  相似文献   

7.
Succinic acid monoethyl ester (EMS) was recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. In the present study the effect of EMS and metformin on erythrocyte membrane bound enzymes and antioxidants activity in plasma and erythrocytes of streptozotocin-nicotinamide induced type 2 diabeteic model was investigated. Succinic acid monoethyl ester was administered intraperitonially for 30 days to control and diabetic rats. The effect of EMS on glucose, insulin, hemoglobin, glycosylated hemoglobin, TBARS, hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (Gpx), glutathione-S-transferase (GST), vitamins C and E, reduced glutathione (GSH) and membrane bound enzymes were studied. The effect of EMS was compared with metformin, a reference drug. The levels of glucose, glycosylated hemoglobin, TBARS, hyderoperoxide, and vitamin E were increased significantly whereas the level of insulin and hemoglobin, as well as antioxidants (SOD, CAT, Gpx, GST, vitamin C and GSH) membrane bound total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were decreased significantly in streptozotocin-nicotinamide diabetic rats. Administration of EMS to diabetic rats showed a decrease in the levels of glucose, glycosylated hemoglobin, lipid peroxidation markers and vitamin E. In addition the levels of insulin, hemoglobin, enzymic antioxidants, vitamin C, and GSH and the activities of membrane bound enzymes also were increased in EMS and metformin treated diabetic rats. The present study indicates that the EMS possesses a significant beneficial effect on erythrocyte membrane bound enzymes and antioxidants defense system in addition to its antidiabetic effect.  相似文献   

8.
Ca antagonists of different classes (verapamil, nifedipine, nicardipine, diltiazem) in a concentration of 10−5 m and higher are known to suppress Ca2+ transport into the lymphocyte cytosol, changing a normal response of lymphocytes to mitogens and antigens and so inhibiting their proliferation, as well as IL‐2‐induced cell proliferation, and their receptor expression on the surface of lymphocytes without cell cytotoxicity. In the present work we studied the effect of some 1,4‐dihydropyridines (DHP) such as nimodipine, nicardipine, nifedipine, niludipine, cerebrocrast, etaftoron, as well as metabolites of cerebrocrast: compounds 7 and 8, (four of the last were synthesized in the Latvian Institute of Organic Synthesis) on rat spleen isolated lymphocyte activation and proliferation in vitro following stimulation with the mitogens concanavalin A (Con A) and recombinant interleukin‐2 (IL‐2), insulin and insulin antibodies. Based on the experimental results we conclude that in low concentrations (10−7 to 10−9 M ) the tested 1,4‐DHP Ca antagonists stimulated the process of rat spleen lymphocyte proliferation and DNA synthesis, especially cerebrocrast. It is proposed that these Ca antagonists, as well as causing a concentration decrease of Ca2+, also activated phosphodiesterase, which in its turn, suppressed cAMP accumulation in the lymphocytes and eventually increased Ca2+ ion transport in the cells. Cerebrocrast among all the studied DHP Ca antagonists was the most potent in studies of activation of the lymphocytes in the presence of Con A, IL‐2 and insulin, which indicates the number of suppressor and helper lymphocytes and formation of insulin and interleukin receptors on their membrane surface. The increase in the lymphocyte suppressive activity produced by this compound effect can prevent diabetes mellitus types I and II at the stages of pre‐diabetes, early and distant diabetes, from hyperexpression of insulin and its receptor antibodies. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
We investigated the effect of treatment with an angiotensin II receptor blocker, candesartan-cilexetil, on the mechanical and electrophysiological properties of cardiomyocytes isolated from streptozotocin-induced diabetic (STZ) rats. Contractile activity and electrophysiological properties were measured in papillary muscle and ventricular cardiomyocytes from normoglycemic and STZ-induced diabetic rats given vehicle or 5mg/kg/day candesartan-cilexetil for 4 weeks. Alterations in the kinetics of contractile activity and intracellular Ca(2+) transients were observed as well as a typical prolongation of action potential duration and significant decrease of potassium currents in diabetic rat heart preparations. Candesartan-cilexetil treatment recovered significantly prolonged action potential and depressed potassium currents in diabetic rats. It was also shown that treatment with AT(1) blocker restored altered kinetics of both the Ca(2+) transients in cardiomyocytes and the contractile activity in papillary muscle strips of diabetic rats. We also showed that incubation of cardiomyocytes from diabetic rats with a protein kinase C (PKC) inhibitor bisindolylmaleimide I (BIM) had a similar effect to candesartan treatment on the Ca(2+) transients. Thus, angiotensin II receptor blockade protects the heart from the development of cellular alterations typically related with diabetes, and this action of AT(1) receptors seems to be related with the activity of PKC.  相似文献   

10.
The receptor sites for 1,4-dihydropyridine (DHP) calcium channel ligands were identified and pharmacologically characterized in partially purified canine coronary artery smooth muscle (CSM) membranes (purification factor for 1,4-DHPs 2.8 and 2.2 respectively) using Ca2+ channel agonist (-)-S-[3H]BAYK 8644 and antagonist (+)-[3H]PN 200-110 as radioligands. The beta-adrenergic receptors were identified with (-)-3-[125I]iodocyanopindolol (ICYP). Specific binding of 1,4-DHPs and ICYP to membrane fraction was saturable, reversible and of both high and low affinity. The Kd for 1,4-DHP Ca2+ channel agonist was 0.59 +/- 0.05 and for antagonist 0.35 +/- 0.06 nmol/l and for low affinity binding sites Kd = 9.0 +/- 0.18 and 18.0 +/- 1.1 nmol/l. The high affinity 1,4-DHP binding (Bmax = 265 +/- 21 and 492 +/- 12 fmol/mg protein), showed stereoselectivity, temperature-dependence as well as pharmacological specificity: isoprenaline- and GTP-sensitivity, positive modulation with dilthiazem and negative modulation with verapamil, that is, properties characteristic of 1,4-DHP receptor sites on L-type Ca2+ channels. The low affinity binding sites were characterized as nonselective, temperature independent, dipyridamol-sensitive and represented a nucleoside transporter. The proportion of high affinity binding sites identified in the CSM membranes was 1.85 : 1.0 in favour of the antagonist. Results obtained with [125I]omega Conotoxin GVI A demonstrated that CSM membrane fractions isolated from median layers of coronary artery were devoid of substantial contamination with fragments of neuronal cells.  相似文献   

11.
Both IDDM and NIDDM are characterized by deviations in peripheral T and B lymphocyte count, Thelper:Tsuppressor ratio, as well as by impaired Tsuppressor function. These abnormalities may promote insulin antibody and other antibody production, contributing to overt diabetes mellitus development in early stage of the disease. In the present study we explored the effects of cerebrocrast (1,4‐dihydropyridine derivative) administration on Con A‐ and IL‐2‐stimulated tissue lymphocyte blast transformation activity and on the thymus and lymph node mass in normal and streptozotocin (STZ)‐induced diabetic rats. It was established that cerebrocrast, administered four times at the doses of 0·05 and 0·5 mg kg−1, has long‐term (up to 14 days) effects on the immune system and protects against the toxic effect of STZ in STZ‐induced diabetic rats, preventing thymus and lymph node mass loss. We conclude that cerebrocrast administration leads to the increase in number and activity of Thelper and Tsuppressor lymphocytes. Glycolysis and DNA synthesis in these cells is augmented under the influence of cerebrocrast administration. We propose that the increase in lymphocyte suppressive activity caused by cerebrocrast administration may prevent the development of IDDM and NIDDM in patients with pre‐diabetes, but in patients with early and overt diabetes mellitus the drug administration may prevent the overexpression of insulin antibodies and other antibodies. The effect of cerebrocrast on the de novo production of insulin and IL‐2 receptors may be beneficial for IDDM and NIDDM patients. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Vitamin E treatment has been found to be beneficial in preventing or reducing diabetic nephropathy. Increased tissue calcium and abnormal microsomal Ca(2+)-ATPase activity have been suggested as contributing factors in the development of diabetic nephropathy. This study was undertaken to test the hypothesis that vitamin E reduces lipid peroxidation and can prevent the abnormalities in microsomal Ca(2+)-ATPase activity and calcium levels in kidney of streptozotocin (STZ)-induced diabetic rats. Male rats were rendered diabetic by a single STZ injection (55 mg x kg(-1) i.p.). After diabetes was verified, diabetic and age-matched control rats were untreated or treated with vitamin E (400-500 IU kg(-1) x day(-1), orally) for 10 weeks. Ca(2+)-ATPase activity and lipid peroxidation (MDA) were determined spectrophotometrically. Blood glucose levels increased approximately five-fold (> 500 mg x dl(-1)) in untreated-diabetic rats but decreased to 340+/-27 mg x dl(-1) in the vitamin E treated-diabetic group. Kidney MDA levels did not significantly change in the diabetic state. However, vitamin E treatment markedly inhibited MDA levels in both control and diabetic animals. Ca(2+)-ATPase activity was 0.483+/-0.008 U l(-1) in the control group and significantly increased to 0.754+/-0.010 U l(-1) in the STZ-diabetic group (p < 0.001). Vitamin E treatment completely prevented the diabetes-induced increase in Ca(2+)-ATPase activity (0.307+/-0.025 U l(-1), p < 0.001) and also reduced the enzyme activity in normal control rats. STZ-diabetes resulted in approximately two-fold increase in total calcium content of kidney. Vitamin E treatment led to a significant reduction in kidney calcium levels of both control and diabetic animals (p < 0.001). Thus, vitamin E treatment can lower blood glucose and lipid peroxidation, which in turn prevents the abnormalities in kidney calcium metabolism of diabetic rats. This study describes a potential biochemical mechanism by which vitamin E supplementation may delay or inhibit the development of cellular damage and nephropathy in diabetes.  相似文献   

13.
Physical exercise produces a variety of psychophysical effects, including altered pain perception. Elevated levels of centrally produced endorphins or endocannabinoids are implicated as mediators of exercise-induced analgesia. The effect of exercise on the development and persistence of disease-associated acute/chronic pain remains unclear. In this study, we quantified the physiological consequence of forced-exercise on the development of diabetes-associated neuropathic pain. Euglycemic control or streptozotocin (STZ)-induced diabetic adult male rats were subdivided into sedentary or forced-exercised (2-10 weeks, treadmill) subgroups and assessed for changes in tactile responsiveness. Two weeks following STZ-treatment, sedentary rats developed a marked and sustained hypersensitivity to von Frey tactile stimulation. By comparison, STZ-treated diabetic rats undergoing forced-exercise exhibited a 4-week delay in the onset of tactile hypersensitivity that was independent of glucose control. Exercise-facilitated analgesia in diabetic rats was reversed, in a dose-dependent manner, by naloxone. Small-diameter (< 30 μm) DRG neurons harvested from STZ-treated tactile hypersensitive diabetic rats exhibited an enhanced (2.5-fold) rightward (depolarizing) shift in peak high-voltage activated (HVA) Ca(2+) current density with a concomitant appearance of a low-voltage activated (LVA) Ca(2+) current component. LVA Ca(2+) currents present in DRG neurons from hypersensitive diabetic rats exhibited a marked depolarizing shift in steady-state inactivation. Forced-exercise attenuated diabetes-associated changes in HVA Ca(2+) current density while preventing the depolarizing shift in steady-state inactivation of LVA Ca(2+) currents. Forced-exercise markedly delays the onset of diabetes-associated neuropathic pain, in part, by attenuating associated changes in HVA and LVA Ca(2+) channel function within small-diameter DRG neurons possibly by altering opioidergic tone.  相似文献   

14.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

15.
Type 2 diabetes is associated with obesity, insulin resistance, hyperglycemia, hyperphagia, polyuria, body weight gain, excessive secretion of glucocorticoids (GCs), thymus involution, adrenal gland hypertrophy, diabetic nephropathy, etc. We examined the effect of cerebrocrast, a new antidiabetic agent (synthesized in the Latvian Institute of Organic Synthesis), on body weight, food and water intake, urine output, and on changes of organ weight: that is, kidney, thymus, adrenal gland of normal rats. Cerebrocrast was administered at doses of 0.05 and 0.5 mg kg−1 per os (p.o.) once a day for three consecutive days, and its effects were observed from 3 to 27 days after the last administration. Cerebrocrast, during the experimental period, decreased body weight by an average of approximately 32.3%, food intake by about 10–15% at the beginning of the experiments and by 22.6% at the end of the experiments, especially at a dose of 0.5 mg kg−1. Water intake and urine output in comparison with controls were decreased. The daily food intake decreased about 1.0 and 2.1 g by administering single cerebrocrast doses of 0.05 and 0.5 mg kg−1 body weight (b.w.), respectively, but by administering for three consecutive days, food intake decreased by about 2.2 and 3.4 g, respectively. The weekly body weight gain decreased by administering a single dose of cerebrocrast by 2.61 and 2.51 g, respectively, and by triple administration it decreased by 4.36 and 3.07 g, respectively. Cerebrocrast has long‐lasting effects on these parameters and on thymus and adrenal gland weight. As cerebrocrast decreased glucose levels in normal and streptozotocin (STZ)‐induced diabetic rats, it also promoted glucose uptake by the brain, intensified insulin action and formation de novo of insulin receptors. We can conclude that cerebrocrast may regulate food intake and body weight through glucose sensing by proopiomelanocortin (POMC) neurons, that are involved in control of glucose homeostasis, stimulation of α‐melanocyte‐stimulating hormone (α‐MSH) secretion, activation of MC4‐Rs and inhibition of neuropeptide Y (NPY) in the ARC of the hypothalamus, affecting the kidney, and causing decreased urine output and water intake. Moreover, it could stimulate secretion of vasopressin. By administration of cerebrocrast thymus mass was increased, thereby preventing the action of GCs. As cerebrocrast inhibited L‐ and T‐type calcium channels, it can prevent vasoconstriction of kidney arterioles and aldosterone secretion that have significant roles in the development of hypertension and diabetic nephropathy. These properties of cerebrocrast are important for treatment of Type 2 diabetes and its consequent development of hypertension and diabetic nephropathy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Two calcium channel antagonists, verapamil and nifedipine, have been used to explore the dependence of secretion on voltage-gated influx of calcium. Both antagonists were able to suppress the secretory response to K(+)-depolarization as well as the stimulation of 45Ca(2+)-uptake. However, they inhibited only partially the stimulation of both secretion and 45Ca(2+)-uptake. However, they inhibited only partially the stimulation of both secretion and 45Ca(2+)-uptake induced by glucose, alone or with palmitate. The stimulation of 45Ca(2+)-uptake by K(+)-depolarization, unlike that induced by glucose, was not sensitive to norepinephrine, starvation or fatty acid oxidation inhibitors. Therefore, it is suggested that glucose either modifies the properties of the voltage-dependent calcium channel and/or accelerates the exchange of a particular intracellular pool of calcium.  相似文献   

17.
The cross-regulatory communication from beta-adrenergic receptors to 1,4-dihydropyridine (DHP) Ca2+ channel agonist and antagonist binding sites and cooperativity between DHP binding sites were studied in microsomal membranes of canine coronary artery (purified to a factor 2.9 for DHPs). The maximal number of binding sites (Bmax) identified in coronary artery microsomal membranes (CAM) with Ca2+ channel agonist (-)-S-(3H)BAY K 8644 was two times higher than Bmax of sites labelled with Ca2+ channel antagonist (+)-(3H)PN 200-110. The exposure of CAM to isoprenaline was accompanied with down-regulation of beta-adrenergic receptors and with increase in binding capacity for DHPs. The increase in Bmax was proportional in both groups of experiments and was related to increased affinity of DHPs. The 1,4-DHP binding sites identified in vascular smooth muscle showed characteristics typical for classification of specific 1,4-DHP receptor on Ca2+ channels. The binding was of high affinity, saturable and reversible, it showed stereoselectivity and it was positively modulated by beta-adrenergic stimulation and its showed cAMP and GTP sensitivity. The results support the hypothesis that beta-receptors also regulate the mode of Ca2+ channels in coronary artery smooth muscle.  相似文献   

18.
Our previous data obtained from in vivo experiments demonstrated high neuroprotective effects of three novel atypical neuronal non-calcium antagonistic 1,4-dihydropyridine (DHP) derivatives cerebrocrast, glutapyrone and tauropyrone. The present studies were carried out in vitro to clarify, at least in part, their mechanism of action in primary culture of cerebellar granule cells by use of 1-methyl-4-phenylpyridinium (MPP+) as a neurotoxic agent which causes dramatic oxidative stress. Cerebrocrast (highly lipophilic, with a classical two-ring structure) dose-dependently (0.01-10.0 microM, EC50 = 13 nM) reduced MPP+-induced cell death. At the same time, the calcium antagonist nimodipine (reference drug) protected cell death at much higher concentrations (EC50 = 12.4 microM). Cerebrocrast decreased also the generation of reactive oxygen species and loss of mitochondrial membrane potential. In contrast, low lipophilic amino acid-containing DHPs glutapyrone and tauropyrone (glutamate- and taurine-containing, correspondingly) were without significant effects indicating their distinct mode of action in comparison to cerebrocrast. We have demonstrated for the first time an ability of atypical non-calcium antagonistic DHP cerebrocrast (which has classical DHP structure elements and high lipophilicity) to protect MPP+-induced deterioration of mitochondrial bioenergetics. One may suggest mitochondria as an essential intracellular target for the neuroprotective action of cerebrocrast and indicate its usefulness in the treatment of Parkinson's disease.  相似文献   

19.
The mechanism by which GnRH increases sperm-zona pellucida binding in humans was investigated in this study. We tested whether GnRH increases sperm-zona binding in Ca(2+)-free medium and in the presence of Ca(2+) channel antagonists. We also examined the GnRH effect on the intracellular free Ca(2+) concentration ([Ca(2+)](i)). Sperm treatment with GnRH increased sperm-zona binding 300% but only when Ca(2+) was present in the medium. In Ca(2+)-free medium or in the presence of 400 nM nifedipine, 80 microM diltiazem, or 50 microM verapamil, GnRH did not influence sperm-zona binding. GnRH increased the [Ca(2+)](i) in the sperm in a dose-dependent manner. The maximum effect was reached with 75 nM GnRH. The GnRH-induced increase in [Ca(2+)](i) was fast and transient, from a basal [Ca(2+)](i) of 413 +/- 22 nM to a peak value of 797 +/- 24 nM. The GnRH-induced increase in [Ca(2+)](i) was entirely due to a Ca(2+) influx from the extracellular medium because the increase in [Ca(2+)](i) was blocked by the Ca(2+) chelator EGTA and by the Ca(2+) channel antagonists nifedipine and diltiazem. These antagonists, however, were not able to inhibit the progesterone-activated Ca(2+) influx. On the contrary, T-type calcium channel antagonists pimozide and mibefradil did not affect GnRH-activated Ca(2+) influx but inhibited the progesterone-activated Ca(2+) influx. Finally, the GnRH-induced Ca(2+) influx was blocked by two specific GnRH antagonists, Ac-D-Nal(1)-Cl-D-Phe(2)-3-Pyr-D-Ala(3)-Arg(5)-D-Glu(AA)(6)-GnRH and Ac-(3,4)-dehydro-Pro(1),-p-fluoro-D-Phe(2), D-Trp(3,6)-GnRH. These results suggest that GnRH increases sperm-zona binding via an elevation of [Ca(2+)](i) through T-type, voltage-operated calcium channels.  相似文献   

20.
Lee JS 《Life sciences》2006,79(16):1578-1584
In the current study, the effect of soy protein and genistein, one of the main isoflavones in soybeans, on blood glucose, lipid profile, and antioxidant enzyme activities in streptozotocin (STZ)-induced diabetic rats was investigated. Male Sprague-Dawley rats were divided into nondiabetic control, STZ, STZ-genistein supplemented group (STZ-G; 600 mg/kg diet), and STZ-isolated soy protein supplemented group (STZ-ISP; 200 g/kg diet). Diabetes was induced by a single injection of STZ (50 mg/kg BW) freshly dissolved in 0.1 mol/L citrate buffer (pH 4.5) into the intraperitonium. Diabetes was confirmed by measuring the fasting blood glucose concentration 48-h post-injection. The rats with blood glucose level above 350 mg/dL were considered to be diabetic. Genistein and ISP were supplemented in the diet for 3 weeks. The supplementation of genistein and ISP increased the plasma insulin level but decreased the HbA(IC) level of the STZ-induced diabetic rats. The supplementation of genistein and ISP increased the glucokinase level of the STZ-induced diabetic rats. A significant reduction in glucose-6-phosphatase was observed in the groups treated with genistein and ISP in comparison with the diabetic control group. Hepatic superoxide dismutase, catalase, and glutathione peroxidase activities of the STZ-induced diabetic rats were significantly decreased in comparison with the control rats. Administering genistein and ISP to the STZ-induced diabetic rats significantly increased those enzyme activities. The concentration of thiobarbituric acid reactive substances in the STZ-induced diabetic rats was significantly elevated, while the genistein and ISP supplement decreased it to the control concentration. Genistein and ISP supplements seem to be beneficial for correcting the hyperglycemia and preventing diabetic complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号