首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Elongated microvilli attach the early sea urchin embryo to the fertilization envelope and support it in a concentric position within the perivitelline space. The contractility of the elongated microvilli was demonstrated in several ways. (1) During normal cleavage, these microvilli change their length to adapt to the change in shape and numbers of blastomeres. (2) When treated with calcium-free sea water, embryos become eccentrically located and the microvilli extend further than normal on one side; when returned to normal sea water, the embryos become centered again. (3) Several agents cause the fertilization envelope to become higher and thinner than normal and the elongated microvilli to extend correspondingly if treated within ten min after fertilization. In some cases, both elongated microvilli and fertilization envelope return to normal size when returned to normal sea water. (4) Fertilization in a papain solution causes the elongated microvilli and the fertilization envelope to contract to the surface of the embryo. (5) Refertilization after the papain-induced contraction can bring about the elongation of these microvilli and the elevation of the fertilization envelope a second time. It was also shown that elongated microvilli are extended immediately upon fertilization, at the same time as the short microvilli. The firm adherence of the tips of elongated microvilli to the fertilization envelope by means of extracellular matrix fibers is shown in a high voltage electron microscope stereoimage. This allows us to understand why it is that when the elongated microvilli extend or contract, the fertilization envelope also extends and contracts accordingly.  相似文献   

2.
Summary The basal laminae and inner extracellular matrices of Lytechinus pictus and Arbacia punctulata embryos were characterized on the basis of lectin binding. Developmental stage specific patterns of lectin binding were observed after microinjection of Con A-FITC and WGA-FITC. Lectin-specific patterns differed between control, sulfate free sea water (SFSW) and tunicamycin treated embryos. Con A injection resulted in the rounding-up of cells in the epithelium and was most pronounced in embryos cultured in the presence of tunicamycin. Basal laminae were isolated by Triton X-100 extraction of whole embryos. Proteins were separated by SDS-PAGE, electrophoretically transferred to nitrocellulose and incubated in biotinylated lectins. Lectin-binding glycoproteins were detected with avidin peroxidase. The electrophoretic pattern of Con A-binding proteins in early developmental stages of Arbacia was similar with several low molecular weight species appearing at gastrulation in control and SFSW embryos. WGA-binding in Arbacia and Lytechinus control embryos was limited to a 125,000 Mr glycoprotein (gp125). In addition to gp125, several high molecular weight WGA-binding glycoproteins were also detected in SFSW embryos. The evidence suggests that mesenchyme migration and gastrulation are correlated with changes in the molecular composition of the ECM.  相似文献   

3.
Summary A novel fibronectin-binding acid polysaccharide (FAPS) was isolated from embryos of the sea urchin. Binding of FAPS to fibronectin was quantitatively measured at physiological pH and ionic strength by two different assay systems. Immunofluorescent studies revealed that FAPS is localized in the extracellular matrix surrounding the mesenchyme cells and primitive gut of middle gastrula. Sea urchin fibronectin was also detected in the extracellular matrix surrounding mesenchyme cells and the cells surrounding the blastopore. When a monoclonal antibody to FAPS (anti-FAPS) was microinjected into the blastocoel, more than one pair of triradiate spicular rudiments was formed and the malformation of spicules was induced. Armless and deformed larvae were also induced by anti-FAPS. FAPS may regulate the number, length, position and direction of spicules. These results implicate the extracellular matrix of the blastocoel in the complex process of differentiation of mesenchyme and the formation of spicules.  相似文献   

4.
Pl-nectin is an ECM protein located on the apical surface of ectoderm cells of Paracentrotus lividus sea urchin embryo. Inhibition of ECM-ectoderm cell interaction by the addition of McAb to Pl-nectin to the culture causes a dramatic impairment of skeletogenesis, offering a good model for the study of factor(s) involved in skeleton elongation and patterning. We showed that skeleton deficiency was not due to a reduction in the number of PMCs ingressing the blastocoel, but it was correlated with a reduction in the number of Pl-SM30-expressing PMCs. Here, we provide evidence on the involvement of growth factor(s) in skeleton morphogenesis. Skeleton-defective embryos showed a strong reduction in the levels of expression of Pl-univin, a growth factor of the TGF-beta superfamily, which was correlated with an equivalent strong reduction in the levels of Pl-SM30. In contrast, expression levels of Pl-BMP5-7 remained low and constant in both skeleton-defective and normal embryos. Microinjection of horse serum in the blastocoelic cavity of embryos cultured in the presence of the antibody rescued skeleton development. Finally, we found that misexpression of univin is also sufficient to rescue defects in skeleton elongation and SM30 expression caused by McAb to Pl-nectin, suggesting a key role for univin or closely related factor in sea urchin skeleton morphogenesis.  相似文献   

5.
Summary Pulse treatment of sea urchin embryos with 3 µM A23187 for 2 h at 20° C, starting from 3 to 6 h of development, prevented the embryos from hatching. Many embryos thus treated with A23187 produced mesenchyme cells and underwent gastrulation while still enclosed within the fertilization membrane. The pulse treatment in this pre-hatching period exerts markedly stronger inhibitory effects on hatching than on other events in early development. Treatment beginning at times earlier than 2 h and later than 8 h of development caused only a slight delay of hatching. The activity of hatching enzyme, known to increase between 6 and 8 h after fertilization, was quite low, if present at all, in embryos in which hatching was blocked by A23187. Hatching enzyme synthesis is probably blocked by the preceding pulse treatment. However, overall protein synthesis, estimated with methionine S 35 incorporation, was somewhat augmented in embryos by the pulse treatment. The blockage of hatching and the augmentation of overall protein synthesis by A23187 were appreciably reversed by procaine, tetracaine, ruthenium red or verapamil. Probably, an artificial Ca2+ signal induced by A23187 activates protein synthesis but blocks the induction of hatching enzyme synthesis.  相似文献   

6.
The purification, biochemical characterization and functional features of a novel extracellular matrix protein are described. This protein is a component of the basal lamina found in embryos from the sea urchin species Paracentrotus lividus and Hemicentrotus pulcherrimus . The protein has been named PI-200 K or Hp-200 K, respectively, because of the species from which it was isolated and its apparent molecular weight in SDS-PAGE under reducing conditions. It has been purified from unfertilized eggs where it is found packed within cytoplasmic granules, and has different binding affinities to type I collagen and heparin, as assessed by affinity chromatography columns. By indirect immunofluorescence experiments it was shown that, upon fertilization, the protein becomes extracellular, polarized at the basal surface of ectoderm cells, and on the surface of primary mesenchyme cells at the blastula and gastrula stages. The protein serves as an adhesive substrate, as shown by an in vitro binding assay where cells dissociated from blastula embryos were settled on 200K protein-coated substrates. To examine the involvement of the protein in morphogenesis of sea urchin embryo, early blastula embryos were microinjected with anti-200K Fab fragments and further development was followed. When control embryos reached the pluteus stage, microinjected embryos showed severe abnormalities in arms and skeleton elongation and patterning. On the basis of current results, it was proposed that 200K protein is involved in the regulation of sea urchin embryo skeletogenesis.  相似文献   

7.
Summary In embryos of the modern sea urchin species, subclass Euechinoidea, primary mesenchyme cells are derived from the progeny of micromeres formed at the sixteen cell stage of embryogenesis. The micromeres reside within the vegetal plate epithelium and later ingress into the blastocoel as primary mesenchyme cells which form the larval skeleton. Embryos of Eucidaris tribuloides, a member of the primitive subclass Perischoechinoidea, exhibit several noteworthy differences from euechinoid primary mesenchyme cell lineage including variable numbers and sizes of micromeres, the absence of mesenchyme ingression, and the lack of any detectable primary mesenchyme although a larval skeleton forms. In the present study, the cell lineage of the spiculogenic mesenchyme has been studied in Eucidaris tribuloides and in the euechinoid Lytechinus pictus by microinjecting the fluorescent tracer, Lucifer Yellow, into individual blastomeres of the embryo. In addition, wheat germ agglutinin, a lectin which binds only to primary mesenchyme cells of the early euechinoid embryo, was injected into the blastocoel of embryos of both species in order to examine the distribution of cells which possess primary mesenchyme-specific cell surface markers. The results of these experiments demonstrate that the spiculogenic mesenchyme of both Lytechinus and Eucidaris arise from descendants of micromeres formed at the sixteen cell stage, although the temporal and spatial distribution of these mesenchyme cells varies considerably between species. Furthermore, the evidence obtained suggests that the information necessary for spicule formation is already segregated to the vegetal pole by the eight cell stage. The results also suggest that there are no gap junctions present between the blastomeres of the early sea urchin embryo.  相似文献   

8.
Summary Blastula cell surface membranes of the sea urchin, Strongylocentrotus purpuratus, were isolated on polycationic beads by a method modified from Jacobson and Branton (1977) and Jacobson (1980). This study represents the first application of this procedure to an embryonic system. Embryo cells were attached to polylysine-coated polyacrylamide beads and lysed, leaving the embryo cell surface membranes still attached to the beads, and cytoplasmic particles were washed free of the exposed inner surfaces of the membranes. Cell surface membrane sheets were desorbed from the beads and collected by centrifugation. Approximately 8% and 5% of the cell surface membranes of dissociated embryo cells were recovered on the beads and in the membrane pellet, respectively. Specific activities of [3H]concanavalin A-binding and of the cell surface marker enzymes, alkaline phosphatase and Na+/K+ ATPase, were 16-, 19-, and 32-fold higher, respectively, in the cell surface membrane fraction than in the embryo cell homogenate. Membranes were relatively free of cytoplasmic contaminants as judged from electron micrographs and enzyme analysis. Activities in the membrane fraction of the cytoplasmic marker enzymes, cytochrome c oxidase, catalase, acid phosphatase, NADP- and NADPH-cytochrome c reductase, and acetylcholinesterase, were substantially less than homogenate levels. The entire procedure can be completed in 4 h. Since this cell surface membrane isolation technique relies only on the tendency of a negatively charged cell to adhere to a positively charged surface, it is less likely than most other methods to exhibit species and developmental stage specificity and should prove useful in the study of the developmental role of embryonic stage-specific membrane components.  相似文献   

9.
10.
A series of polyalkoxy substituted 7-hydroxy- and 7-methoxy-4-aryl-4H-chromenes were evaluated using the sea urchin embryo model to yield several compounds exhibiting potent antimitotic microtubule destabilizing activity. Data obtained by the assay were further confirmed in the NCI60 human cancer cell screen. The replacement of methylenedioxy ring A and lactone ring D in podophyllotoxin analogues by 7-methoxy, 2-NH2, and 3-CN groups in 4-aryl-4H-chromenes resulted in potent antimitotic microtubule destabilizing agents. Feasible synthesis and high yields render 7-methoxy-4H-chromenes to be a promising series for further anticancer drug development.  相似文献   

11.
The primary mesenchyme cells (PMCs) of the sea urchin embryo undergo a dramatic sequence of morphogenetic behaviors that culminates in the formation of the larval endoskeleton. Recent studies have identified components of a gene regulatory network that underlies PMC specification and differentiation. In previous work, we identified novel gene products expressed specifically by PMCs (Illies, M.R., Peeler, M.T., Dechtiaruk, A.M., Ettensohn, C.A., 2002. Identification and developmental expression of new biomineralization proteins in the sea urchin, Strongylocentrotus purpuratus. Dev. Genes Evol. 212, 419-431). Here, we show that one of these gene products, P16, plays an essential role in skeletogenesis. P16 is not required for PMC specification, ingression, migration, or fusion, but is essential for skeletal rod elongation. We have compared the predicted sequences of P16 from two species and show that this small, acidic protein is highly conserved in both structure and function. The predicted amino acid sequence of P16 and the subcellular localization of a GFP-tagged form of the protein suggest that P16 is enriched in the plasma membrane. It may function to receive signals required for skeletogenesis or may play a more direct role in the deposition of biomineral. Finally, we place P16 downstream of Alx1 in the PMC gene network, thereby linking the network to a specific “effector” protein involved in biomineralization.  相似文献   

12.
13.
The hyaline layer (HL) is an apically located extracellular matrix (ECM) which surrounds the sea urchin embryo from the time of fertilization until metamorphosis occurs. While gelatin-cleavage activities were absent from freshly prepared hyaline layers, a dynamic pattern of activities developed in layers incubated at 15 or 37 degrees C in Millipore-filtered sea water (MFSW). Cleavage activities at 90, 55, 41, and 32 kDa were evident following incubation at either temperature. The activation pathway leading to the appearance of these species was examined to determine the minimum salt conditions required for processing and to establish precursor-product relationships. In both qualitative and quantitative assays, the purified 55 kDa gelatinase activity was inhibited by 1,10-phenanthroline (a zinc-specific chelator) and ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA). Calcium reconstituted the activity of the EGTA-inhibited enzyme with an apparent dissociation constant (calcium) of 1.2 mM. Developmental substrate gel analysis was performed using various stage embryos. The 55 and 32 kDa species comigrated with gelatin-cleavage activities present in sea urchin embryos. Collectively, the results reported here document a zymogen activation pathway which generates a 55 kDa, gelatin-cleaving activity within the extraembryonic HL. This species displayed characteristics of the matrix metalloproteinase class of ECM modifying enzymes.  相似文献   

14.
We have partially purified and characterized an 87 kDa gelatinase activity expressed in later stage sea urchin embryos. Cleavage activity was specific for gelatin and no cleavage of sea urchin peristome type I collagen, bovine serum albumin or casein was detected. Magnesium and Zn2+ inhibited the gelatinase and Ca2+ protected against inhibition. Ethylenediamine tetracetic acid, ethylenebisoxyethylenenitriol tetraacetic acid and 1,10-phenanthroline were inhibitory, suggesting that the gelatinase is a Ca2+- and Zn2+-dependent metalloproteinase. No inhibition was detected with serine or cysteine protease inhibitors and the vertebrate matrix metalloproteinase (MMP) inhibitor, Batimastat, was also ineffective. The vertebrate MMP activator p-aminophenylmercuric acetate was without effect. These results allow us to identify both similarities and differences between echinoderm and vertebrate gelatinases. J. Cell. Biochem. 66: 337–345, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
16.
An asymmetric fourth cell division in the sea urchin embryo results in formation of daughter cells, macromeres and micromeres, with distinct sizes and fates. Several lines of functional evidence presented here, including pharmacological interference and dominant negative protein expression, indicate that heterotrimeric G protein Gi and its interaction partner, activator of G-protein signaling (AGS), are necessary for this asymmetric cell division. Inhibition of Gi signaling by pertussis toxin interferes with micromere formation and leads to defects in embryogenesis. AGS was isolated in a yeast two-hybrid screen with G alpha i as bait and was expressed in embryos localized to the cell cortex at the time of asymmetric divisions. Introduction of exogenous dominant-negative AGS protein, containing only G-protein regulatory (GPR) domains, selectively prevented the asymmetric division in normal micromere formation. These results support the growing evidence that AGS is a universal regulator of asymmetric cell divisions in embryos.  相似文献   

17.
Spicule matrix proteins are the products of primary mesenchyme cells, and are present in calcite spicules of the sea urchin embryo. To study their possible roles in skeletal morphogenesis, monoclonal antibodies against SM50, SM30 and another spicule matrix protein (29 kDa) were obtained. The distribution of these proteins in the embryo skeleton was observed by immunofluorescent staining. In addition, their distribution inside the spicules was examined by a 'spicule blot' procedure, direct immunoblotting of proteins embedded in crystallized spicules. Our observations showed that SM50 and 29 kDa proteins were enriched both outside and inside the triradiate spicules of the gastrulae, and also existed in the corresponding portions of growing spicules in later embryos and micromere cultures. The straight extensions of the triradiate spicules and thickened portions of body rods in pluteus spicules were also rich in these proteins. The SM30 protein was only faintly detected along the surface of spicules. By examination using the spicule blot procedure, however, SM30 was clearly detectable inside the body rods and postoral rods. These results indicate that SM50 and 29 kDa proteins are concentrated in radially growing portions of the spicules (normal to the c-axis of calcite), while SM30 protein is in the longitudinally growing portions (parallel to the c-axis). Such differential distribution suggests the involvement of these proteins in calcite growth during the formation of three-dimensionally branched spicules.  相似文献   

18.
19.
20.
During sea urchin embryogenesis, the skeleton is produced by primary mesenchyme cells (PMCs). PMCs undergo a sequence of morphogenetic behaviors that includes ingression, directed migration, and cell–cell fusion. Ultimately, PMCs deposit the calcite-containing biomineral that forms the endoskeleton of the late embryo and early larva. The endoskeleton has a stereotypical structure and is the major determinant of the distinctive, angular shape of the larva. Although many candidate biomineralization proteins have been identified, functional data concerning these proteins are scant. Here, we identify and characterize two new biomineralization genes, p58-a and p58-b. We show that these two genes are highly conserved in Strongylocentrotus purpuratus and Lytechinus variegatus, two sea urchin species whose ancestors diverged approximately 100 mya. The p58-a and p58-b genes lie in tandem on the chromosome, suggesting that one of the two genes arose via a gene duplication event. The two genes encode closely related, type I transmembrane proteins. We have established by whole mount in situ hybridization that p58-a and p58-b are expressed specifically in the PMCs in both species. Knockdown of either gene by morpholino antisense oligonucleotides leads to profound defects in skeletogenesis, although skeletal elements are not completely eliminated. The P58-A and P58-B proteins do not appear to play a role in the specification, directed migration or differentiation of the PMCs, but most likely are directly involved in biomineralization during sea urchin embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号