首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The purpose of this study was to explore the connection between radiation-induced apoptosis and progression of cells through the phases of the cell cycle. Cells of the human T-cell line Jurkat were separated by centrifugal elutriation into populations enriched in G(1)-, S- and G(2)/M-phase cells before irradiation. After a dose of 20 Gy, the onset of massive apoptosis occurred at about 6 h in all populations regardless of the phase of the cell cycle in which they were irradiated. In contrast, after 2 Gy, cells died at various times after a pronounced G(2)/M-phase arrest. These results indicate that radiation-induced apoptosis can occur independently of cell cycle arrest and that the time for onset of apoptosis may be dependent on the radiation dose.  相似文献   

3.
Treatment of hematopoietic malignancies often requires allogeneic bone marrow transplantation, and the subsequent graft-versus-leukemia response is crucial for the elimination of malignant cells. Cytotoxic T lymphocytes and NK cells responsible for the immunoelimination express Fas ligand and strongly rely on the induction of Fas receptor-mediated apoptosis for their action. Although cancer cells are removed successfully by graft-versus-leukemia reactions in myeloid malignancies, their efficiency is low in T cell leukemias. This may be partially because of the ability of malignant T cells to escape apoptosis. Our work shows that Eph family receptor EphB3 is consistently expressed by malignant T lymphocytes, most frequently in combination with EphB6, and that stimulation with their common ligands, ephrin-B1 and ephrin-B2, strongly suppresses Fas-induced apoptosis in these cells. This effect is associated with Akt activation and with the inhibition of the Fas receptor-initiated caspase proteolytic cascade. Akt proved to be crucial for the prosurvival response, because inhibition of Akt, but not of other molecules central to T cell biology, including Src kinases, MEK1 and MEK2, blocked the antiapoptotic effect. Overall, this demonstrates a new role for EphB receptors in the protection of malignant T cells from Fas-induced apoptosis through Akt engagement and prevention of caspase activation. Because Fas-triggered apoptosis is actively involved in the graft-versus-leukemia response and cytotoxic T cells express ephrin-Bs, our observations suggest that EphB receptors are likely to support immunoevasivenes of T cell malignancies and may represent promising targets for therapies, aiming to enhance immunoelimination of cancerous T cells.  相似文献   

4.
The relationship of the T cell influences involved in human B cell activation and differentiation into immunoglobulin-secreting cells (ISC) was investigated. T cell supernatants (T supt) generated by stimulating T cells with phytohemagglutinin and phorbol myristate acetate contained activities capable of augmenting DNA synthesis and the growth of mitogen-stimulated B cells and supporting the differentiation of ISC. To examine the role of T supt in B cell activation and the progression through the cell cycle, T cell- and monocyte-depleted B cells were stimulated with formalinized Cowan I strain Staphylococcus aureus (SA), and the percentages of cells in G1, S, and G2 + M were determined by acridine orange staining and analysis. In all experiments, a similar percentage of cells entered G1 during the first 24 to 36 hr of culture when stimulated with SA or SA + T supt. Similar results were seen when B cell activation was analyzed by acquisition of a number of other markers of cell activation. Analysis of cell cycle progression with mithramycin staining of cellular DNA in the presence or absence of vinblastine to arrest mitosis indicated that SA-activated B cells were able to complete S and divide in the absence of T supt. Although an effect of T supt on the progression of B cells through the S phase was evident during the first cell cycle, the major effect only became apparent after the first round of cell division. Although T supt was not necessary for initial B cell activation, T cell influences were absolutely necessary for the differentiation of ISC. T supt did not need to be present during the initial 24 to 36 hr of incubation to permit subsequent generation of ISC. However, when T supt was present initially, an increased number of ISC were produced. Hydroxyurea elimination of cells traversing the G1-S interphase indicated that reception of the differentiation signal occurred before the S phase, but that the generation of ISC required subsequent DNA synthesis and/or cell division. Although precursors of ISC were entirely contained within the population triggered to divide by SA alone, there was no preferential expansion of such precursors as a result of SA stimulation. These results indicate that T cell signals are not absolutely necessary for initial B cell activation and progression through the first cell cycle, although T cell factors promote DNA synthesis by some activated B cells. In contrast, differentiation into ISC is completely dependent on T cell influences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
BACKGROUND: Human colon cancers have a high frequency of p53 mutations, and cancer cells expressing mutant p53 tend to be resistant to current chemo- and radiation therapy. It is thus important to find therapeutic agents that can inhibit colon cancer cells with altered p53 status. beta-Lapachone, a novel topoisomerase inhibitor, has been shown to induce cell death in human promyelocytic leukemia and prostate cancer cells through a p53-independent pathway. Here we examined the effects of beta-lapachone on human colon cancer cells. MATERIALS AND METHODS: Several human colon cancer cell lines, SW480, SW620, and DLD1, with mutant or defective p53, were used. The antiproliferative effects of beta-lapachone were assessed by colony formation assays, cell cycle analysis, and apoptosis analysis, including annexin V staining and DNA laddering analysis. The effects on cell cycle and apoptosis regulatory proteins were examined by immunoblotting. RESULTS: All three cell lines, SW480, SW620, and DLD1, were sensitive to beta-lapachone, with an IC(50) of 2 to 3 microM in colony formation assays, a finding similar to that previously reported for prostate cancer cells. However, these cells were arrested in different stages of S phase. At 24 hr post-treatment, beta-lapachone induced S-, late S/G2-, and early S-phase arrest in SW480, SW620, and DLD1 cells, respectively. The cell cycle alterations induced by beta-lapachone were congruous with changes in cell cycle regulatory proteins such as cyclin A, cyclin B1, cdc2, and cyclin D1. Moreover, beta-lapachone induced apoptosis, as demonstrated by annexin V staining, flow cytometric analysis of DNA content, and DNA laddering analysis. Furthermore, down-regulation of mutant p53 and induction of p27 in SW480 cells, and induction of pro-apoptotic protein Bax in DLD1 cells may be pertinent to the anti-proliferative and apoptotic effects of beta-lapachone on these cells. CONCLUSIONS: beta-Lapachone induced cell cycle arrest and apoptosis in human colon cancer cells through a p53-independent pathway. For human colon cancers, which often contain p53 mutations, beta-lapachone may prove to be a promising anticancer agent that can target cancer cells, especially those with mutant p53.  相似文献   

7.
The transmembrane receptor Notch1 plays a crucial role in differentiation and apoptosis of hematopoietic cells. To investigate the influence of Notch1 on apoptosis and cell growth of mature murine B cells, we transduced the murine B-lymphoma line NYC 31.1 with a constitutively active, intracellular form of human Notch1 (Notch1-ICT). NYC cells represent mature activated B cells that can be induced to undergo apoptosis by crosslinking of the B-cell receptor (BCR). In contrast to investigations in immature chicken B-cell lines, transduced Notch1-ICT did not affect cell cycle progression, cell growth or surface IgM levels in NYC cells and resulted only in a slight induction of apoptosis. However, BCR-crosslinking enhanced apoptosis, but did not influence cell cycle progression in Notch1-ICT-positive NYC cells. These data imply a distinct function of Notch1 in mature murine B-cells as compared to immature chicken B cells and provide further evidence for Notch1's involvement in B-cell differentiation and development.  相似文献   

8.
9.
目的:探讨组蛋白去乙酰化酶抑制剂曲古霉素A(TSA)对人膀胱癌T24细胞周期和凋亡的影响。方法:以不同剂量TSA(0.1μM,0.3μM和1μM)处理T24细胞。采用MTT法检测细胞存活率,AnnexinV-PI染色检测细胞凋亡,流式细胞仪检测caspase-3活性,Western blot法检测P21蛋白表达。结果:TSA剂量依赖性降低膀胱癌细胞存活率,促进细胞凋亡,表现为AnnexinV阳性细胞明显增多,同时活化的caspase-3水平增高。TSA还可通过诱导膀胱癌细胞周期阻滞于G2/M期抑制细胞生长,且呈剂量依赖性。结论:TSA通过促进caspase-3激活诱导膀胱癌细胞凋亡,同时诱导细胞阻滞于G2/M期。  相似文献   

10.
Stringent accessory cell (AC) depletion by a three-step procedure--plastic adherence, nylon wool adherence, followed by simultaneous treatment with two anti-AC monoclonal antibodies + complement--has allowed the demonstration of several AC-dependent stages in the T cell activation pathway. Simultaneous analysis of DNA content and cell surface immunofluorescence (correlation of activation antigen expression with cell cycle position) or DNA and RNA content (cell cycle position) of cultured cells was accomplished by dual parameter flow cytometry. AC-depleted, PHA-stimulated human peripheral blood T lymphocytes (PBTL) failed to exhibit "early" indicators of activation, including increased RNA content, expression of three activation-associated cell surface proteins (IL 2 receptor, transferrin receptor, and 4F2 protein), and the production of IL 2. The AC-depleted PBTL that failed to express these "early" markers of activation also failed to progress into the "late" phase of activation, DNA synthesis. All indicators of PHA responsiveness were fully replenished upon addition of AC but were only reconstituted to intermediate levels by addition of excess quantities of either highly purified IL 1 or crude AC-conditioned medium with lymphocyte-activating factor activity. These data suggest that the AC membrane plays a key and as yet undefined role in the stimulation of T cells by PHA.  相似文献   

11.
Brassinosteroids (BRs) are plant hormones that appear to be ubiquitous in both lower and higher plants. Recently, we published the first evidence that some natural BRs induce cell growth inhibitory responses in several human cancer cell lines without affecting normal non-tumor cell growth (BJ fibroblasts). The aim of the study presented here was to examine the mechanism of the antiproliferative activity of the natural BRs 28-homocastasterone (28-homoCS) and 24-epibrassinolide (24-epiBL) in human hormone-sensitive and -insensitive (MCF-7 and MDA-MB-468, respectively) breast cancer cell lines. The effects of 6, 12 and 24 h treatments with 28-homoCS and 24-epiBL on cancer cells were surveyed using flow cytometry, Western blotting, TUNEL assays and immunofluorescence analyses. The studied BRs inhibited cell growth and induced blocks in the G1 cell cycle phase. ER-α immunoreactivity was uniformly present in the nuclei of control MCF-7 cells, while cytoplasmic speckles of ER-α immunofluorescence appeared in BR-treated cells (IC50, 24 h). ER-β was relocated to the nuclei following 28-homoCS treatment and found predominantly at the periphery of the nuclei in 24-epiBL-treated cells after 24 h of treatment. These changes were also accompanied by down-regulation of the ERs following BR treatment. In addition, BR application to breast cancer cells resulted in G1 phase arrest. Furthermore, TUNEL staining and double staining with propidium iodide and acridine orange demonstrated the BR-mediated induction of apoptosis in both cell lines, although changes in the expression of apoptosis-related proteins were modulated differently by the BRs in each cell line. The studied BRs seem to exert potent growth inhibitory effects via interactions with the cell cycle machinery, and they could be highly valuable leads for agents for managing breast cancer.  相似文献   

12.
We have previously reported that CD40 stimulation sensitizes human memory B cells to undergo apoptosis upon subsequent B cell receptor (BCR) ligation. We have proposed that activation stimuli connect the BCR to an apoptotic pathway in mature B cells and that BCR-induced apoptosis of activated B cells could serve a similar function as activation-induced cell death in the mature T cell compartment. Although it has been reported that caspases are activated during this process, the early molecular events that link the Ag receptor to these apoptosis effectors are largely unknown. In this study, we report that acquisition of susceptibility to BCR-induced apoptosis requires entry of memory B cells into the S phase of the cell cycle. We also show that transduction of the death signal via the BCR sequentially proceeds through a caspase-independent and a caspase-dependent phase, which take place upstream and downstream of the mitochondria, respectively. Furthermore, our data indicate that the BCR-induced alterations of the mitochondrial functions are involved in activation of the caspase cascade. We have found both caspases-3 and -9, but not caspase-8, to be involved in the BCR apoptotic pathway, thus supporting the notion that initiation of the caspase cascade could be under the control of the caspase-9/Apaf-1/cytochrome c multimolecular complex. Altogether, our findings establish the mitochondria as the connection point through which the Ag receptor can trigger the executioners of apoptotic cell death in mature B lymphocytes.  相似文献   

13.
T cell development in the thymus and activation of mature T cells in the periphery depend on signals stimulated by engagement of the T cell antigen receptor (TCR). Among the second messenger cascades initiated by TCR ligation include the phosphatidylinositol pathway where the membrane phospholipid, phosphatidylinositol 4,5-bisphosphate, is hydrolyzed to inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Inositol 1,4,5-trisphosphate signals a rise in intracellular free calcium, leading to translocation of nuclear factor of activated T cells into the nucleus. DAG activates RasGRP and protein kinase C theta. Because both RasGRP and protein kinase C theta are essential for thymocyte and T cell function, it is critical to understand how DAG is regulated. In this report, we demonstrate expression of DAG kinase zeta (DGKzeta, the enzyme that catalyzes the conversion of DAG to phosphatidic acid) in multiple lymphoid organs, with highest expression observed within the T cell compartment. Overexpression studies in Jurkat T cells indicate that DGKzeta interferes with TCR-induced Ras and ERK activation, AP-1 induction, and expression of the activation marker CD69. In contrast, TCR-stimulated calcium influx is not altered. Mutational analysis indicates that the kinase and DAG binding domains, but not the ankyrin repeats of DGKzeta, are required for its inhibitory effects. Collectively these studies demonstrate a potential role of DGKzeta to function as a selective negative regulator of DAG signaling on T cell activation and provide the first structure/function analysis of this enzyme in T cells.  相似文献   

14.
Helicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H. pylori isolates harbour numerous well-known adhesins (BabA/B, SabA, AlpA/B, OipA and HopZ) and the cag (cytotoxin-associated genes) pathogenicity island encoding a type IV secretion system (T4SS). The adhesins establish tight bacterial contact with host target cells and the T4SS represents a needle-like pilus device for the delivery of effector proteins into host target cells such as CagA. BabA and SabA bind to blood group antigen and sialylated proteins respectively, and a series of T4SS components including CagI, CagL, CagY and CagA have been shown to target the integrin β1 receptor followed by injection of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine may also play a role in the delivery process. While substantial progress has been made in our current understanding of many of the above factors, the host cell receptors for OipA, HopZ and AlpA/B during infection are still unknown. Here we review the recent progress in characterizing the interactions of the various adhesins and structural T4SS proteins with host cell factors. The contribution of these interactions to H. pylori colonization and pathogenesis is discussed.  相似文献   

15.
Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs) present a great opportunity to treat and model human disease as a cell replacement therapy. There is a growing pressure to understand better the signal transduction pathways regulating pluripotency and self-renewal of these special cells in order to deliver a safe and reliable cell based therapy in the near future. Many signal transduction pathways converge on two major cell functions associated with self-renewal and pluripotency: control of the cell cycle and apoptosis, although a standard method is lacking across the field. Here we present a detailed protocol to assess the cell cycle and apoptosis of ESC and iPSCs as a single reference point offering an easy to use standard approach across the field.  相似文献   

16.
17.
It has previously been shown that the c-fos proto-oncogene is rapidly and transiently induced following growth factor stimulation of quiescent NIH3T3 mouse fibroblasts. To investigate a possible role of c-fos in growth control mechanisms we have studied its expression and inducibility during the NIH3T3 cell cycle. Two major conclusions can be drawn from this analysis. First, expression of c-fos is not cell cycle-regulated, and is barely detectable in all phases of the cycle. Second, cells at different stages of the cell cycle (except for mitosis) are as sensitive to c-fos induction by growth factors as quiescent cells. These observations suggest that induction of the c-fos gene does not play a role during the continuous cycling of NIH3T3 cells, but they are fully compatible with the hypothesis that a function of c-fos may be associated with the induction of competence in fibroblasts. Through such a function c-fos may contribute to moving cells out of the quiescent state.  相似文献   

18.
Muscarinic receptors, expressed in several primary and metastatic tumours, appear to be implicated in their growth and propagation. In this work we have demonstrated that M2 muscarinic receptors are expressed in glioblastoma human specimens and in glioblastoma cell lines. Moreover, we have characterized the effects of the M2 agonist arecaidine on cell growth and survival both in two different glioblastoma cell lines (U251MG and U87MG) and in primary cultures obtained from different human biopsies. Cell growth analysis has demonstrated that the M2 agonist arecaidine strongly decreased cell proliferation in both glioma cell lines and primary cultures. This effect was dose and time dependent. FACS analysis has confirmed cell cycle arrest at G1/S and at G2/M phase in U87 cells and U251 respectively. Cell viability analysis has also shown that arecaidine induced severe apoptosis, especially in U251 cells. Chemosensitivity assays have, moreover, shown arecaidine and temozolomide similar effects on glioma cell lines, although IC50 value for arecaidine was significantly lower than temozolomide. In conclusion, we report for the first time that M2 receptor activation has a relevant role in the inhibition of glioma cell growth and survival, suggesting that M2 may be a new interesting therapeutic target to investigate for glioblastoma therapy.  相似文献   

19.
20.
Triggering of lymphocyte antigen receptors is the critical first step in the adaptive immune response against pathogens. T cell receptor (TCR) ligation assembles a large membrane signalosome, culminating in NF-kappaB activation [1,2]. Recently, caspase-8 was found to play a surprisingly prominent role in lymphocyte activation in addition to its well-known role in apoptosis [3]. Caspase-8 is activated after TCR stimulation and nucleates a complex with B cell lymphoma 10 (BCL10), paracaspase MALT1, and the inhibitors of kappaB kinase (IKK) complex [4]. We now report that the ubiquitin ligase TRAF6 binds to active caspase-8 upon TCR stimulation and facilitates its movement into lipid rafts. We identified in silico two putative TRAF6 binding motifs in the caspase-8 sequence and found that mutation of critical residues within these sites abolished TRAF6 binding and diminished TCR-induced NF-kappaB activation. Moreover, RNAi-mediated silencing of TRAF6 abrogated caspase-8 recruitment to the lipid rafts. Protein kinase Ctheta (PKCtheta), CARMA1, and BCL10 are also required for TCR-induced caspase-8 relocation, but only PKCtheta and BCL10 control caspase-8 activation. Our results suggest that PKCtheta independently controls CARMA1 phosphorylation and BCL10-dependent caspase-8 activation and unveil an essential role for TRAF6 as a critical adaptor linking these two convergent signaling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号