首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double-stranded RNA binding domain (dsRBD) is an approximately 65 amino acid motif that is found in a variety of proteins that interact with double-stranded (ds) RNA, such as Escherichia coli RNase III and the dsRNA-dependent kinase, PKR. Drosophila staufen protein contains five copies of this motif, and the third of these binds dsRNA in vitro. Using multinuclear/multidimensional NMR methods, we have determined that staufen dsRBD3 forms a compact protein domain with an alpha-beta-beta-beta-alpha structure in which the two alpha-helices lie on one face of a three-stranded anti-parallel beta-sheet. This structure is very similar to that of the N-terminal domain of a prokaryotic ribosomal protein S5. Furthermore, the consensus derived from all known S5p family sequences shares several conserved residues with the dsRBD consensus sequence, indicating that the two domains share a common evolutionary origin. Using in vitro mutagenesis, we have identified several surface residues which are important for the RNA binding of the dsRBD, and these all lie on the same side of the domain. Two residues that are essential for RNA binding, F32 and K50, are also conserved in the S5 protein family, suggesting that the two domains interact with RNA in a similar way.  相似文献   

2.
3.
Following purification by affinity chromatography, a Leishmania major S-hexylglutathione- binding protein of molecular mass 66kDa was isolated. The immune serum against the parasite 66kDa polypeptide when used to screen a L. major cDNA library could identify clones encoding for the human v-fos transformation effector homologue, namely ribosomal protein S3a, and thus was named LmS3a-related protein (LmS3arp). A 1027bp cDNA fragment was found to contain the entire parasite gene encoding for a highly basic protein of 30kDa calculated molecular mass sharing homology to various ribosomal S3a proteins from different species. Using computer methods for a multiple alignment and sequence motif search, we found that LmS3arp shares a sequence homology to class theta glutathione S-transferase mainly in a segment containing critical residues involved in glutathione binding. These new findings are discussed in the light of recent published data showing multiple function(s) of the ribosomal proteins S3a.  相似文献   

4.
5.
The transport of iron complexes through outer membrane transporters from Gram-negative bacteria is highly dependent on the TonB system. Together, the three components of the system, TonB, ExbB and ExbD, energize the transport of iron complexes through the outer membrane by utilizing the proton motive force across the cytoplasmic membrane. The three-dimensional (3D) structure of the periplasmic domain of TonB has previously been determined. However, no detailed structural information for the other two components of the TonB system is currently available and their role in the iron-uptake process is not yet clearly understood. ExbD from Escherichia coli contains 141 residues distributed in three domains: a small N-terminal cytoplasmic region, a single transmembrane helix and a C-terminal periplasmic domain. Here we describe the first well-defined solution structure of the periplasmic domain of ExbD (residues 44-141) solved by multidimensional nuclear magnetic resonance (NMR) spectroscopy. The monomeric structure presents three clearly distinct regions: an N-terminal flexible tail (residues 44-63), a well-defined folded region (residues 64-133) followed by a small C-terminal flexible region (residues 134-141). The folded region is formed by two alpha-helices that are located on one side of a single beta-sheet. The central beta-sheet is composed of five beta-strands, with a mixed parallel and antiparallel arrangement. Unexpectedly, this fold closely resembles that found in the C-terminal lobe of the siderophore-binding proteins FhuD and CeuE. The ExbD periplasmic domain has a strong tendency to aggregate in vitro and 3D-TROSY (transverse relaxation optimized spectroscopy) NMR experiments of the deuterated protein indicate that the multimeric protein has nearly identical secondary structure to that of the monomeric form. Chemical shift perturbation studies suggest that the Glu-Pro region (residues 70-83) of TonB can bind weakly to the surface and the flexible C-terminal region of ExbD. At the same time the Lys-Pro region (residues 84-102) and the folded C-terminal domain (residues 150-239) of TonB do not show significant binding to ExbD, suggesting that the main interactions forming the TonB complex occur in the cytoplasmic membrane.  相似文献   

6.
7.
Resuscitation-promoting factor (RPF) proteins reactivate stationary-phase cultures of (G+C)-rich Gram-positive bacteria including the causative agent of tuberculosis, Mycobacterium tuberculosis. We report the solution structure of the RPF domain from M. tuberculosis Rv1009 (RpfB) solved by heteronuclear multidimensional NMR. Structural homology with various glycoside hydrolases suggested that RpfB cleaved oligosaccharides. Biochemical studies indicate that a conserved active site glutamate is important for resuscitation activity. These data, as well as the presence of a clear binding pocket for a large molecule, indicate that oligosaccharide cleavage is probably the signal for revival from dormancy.  相似文献   

8.
Kresge N  Vacquier VD  Stout CD 《Biochemistry》2001,40(18):5407-5413
Sp18 is an 18 kDa protein that is released from abalone sperm during the acrosome reaction. It coats the acrosomal process where it is thought to mediate fusion between sperm and egg cell membranes. Sp18 is evolutionarily related to lysin, a 16 kDa abalone sperm protein that dissolves the vitelline envelope surrounding the egg. The two proteins were generated by gene duplication followed by rapid divergence by positive selection. Here, we present the crystal structure of green abalone sp18 resolved to 1.86 A. Sp18 is composed of a bundle of five alpha-helices with surface clusters of basic and hydrophobic residues, giving it a large dipole moment and making it extremely amphipathic. The large clusters of hydrophobic surface residues and domains of high positive electrostatic surface charge explain sp18's ability as a potent fusagen of liposomes. The overall fold of sp18 is similar to that of green abalone lysin; however, the surface features of the proteins are quite different, accounting for their different roles in fertilization. This is the first crystal structure of a protein implicated in sperm-egg fusion during animal fertilization.  相似文献   

9.
S4 is one of the first proteins to bind to 16S RNA during assembly of the prokaryotic ribosome. Residues 43-200 of S4 from Bacillus stearothermophilus (S4 Delta41) bind specifically to both 16S rRNA and to a pseudoknot within the alpha operon mRNA. As a first step toward understanding how S4 recognizes and organizes RNA, we have solved the structure of S4 Delta41 in solution by multidimensional heteronuclear nuclear magnetic resonance spectroscopy. The fold consists of two globular subdomains, one comprised of four helices and the other comprised of a five-stranded antiparallel beta-sheet and three helices. Although cross-linking studies suggest that residues between helices alpha2 and alpha3 are close to RNA, the concentration of positive charge along the crevice between the two subdomains suggests that this could be an RNA-binding site. In contrast to the L11 RNA-binding domain studied previously, S4 Delta41 shows no fast local motions, suggesting that it has less capacity for refolding to fit RNA. The independently determined crystal structure of S4 Delta41 shows similar features, although there is small rotation of the subdomains compared with the solution structure. The relative orientation of the subdomains in solution will be verified with further study.  相似文献   

10.
RISC, the RNA-induced silencing complex, uses short interfering RNAs (siRNAs) or micro RNAs (miRNAs) to select its targets in a sequence-dependent manner. Key RISC components are Argonaute proteins, which contain two characteristic domains, PAZ and PIWI. PAZ is highly conserved and is found only in Argonaute proteins and Dicer. We have solved the crystal structure of the PAZ domain of Drosophila Argonaute2. The PAZ domain contains a variant of the OB fold, a module that often binds single-stranded nucleic acids. PAZ domains show low-affinity nucleic acid binding, probably interacting with the 3' ends of single-stranded regions of RNA. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway.  相似文献   

11.
M Stoldt  J W?hnert  M G?rlach    L R Brown 《The EMBO journal》1998,17(21):6377-6384
The structure of the Escherichia coli ribosomal protein L25 has been determined to an r.m.s. displacement of backbone heavy atoms of 0.62 +/- 0.14 A by multi-dimensional heteronuclear NMR spectroscopy on protein samples uniformly labeled with 15N or 15N/13C. L25 shows a new topology for RNA-binding proteins consisting of a six-stranded beta-barrel and two alpha-helices. A putative RNA-binding surface for L25 has been obtained by comparison of backbone 15N chemical shifts for L25 with and without a bound cognate RNA containing the eubacterial E-loop that is the site for binding of L25 to 5S ribosomal RNA. Sequence comparisons with related proteins, including the general stress protein, CTC, show that the residues involved in RNA binding are highly conserved, thereby providing further confirmation of the binding surface. Tertiary structure comparisons indicate that the six-stranded beta-barrels of L25 and of the tRNA anticodon-binding domain of glutaminyl-tRNA synthetase are similar.  相似文献   

12.
The bacteriophage T4 gene 59 helicase assembly protein is required for recombination-dependent DNA replication, which is the predominant mode of DNA replication in the late stage of T4 infection. T4 gene 59 helicase assembly protein accelerates the loading of the T4 gene 41 helicase during DNA synthesis by the T4 replication system in vitro. T4 gene 59 helicase assembly protein binds to both T4 gene 41 helicase and T4 gene 32 single-stranded DNA binding protein, and to single and double-stranded DNA. We show here that T4 gene 59 helicase assembly protein binds most tightly to fork DNA substrates, with either single or almost entirely double-stranded arms. Our studies suggest that the helicase assembly protein is responsible for loading T4 gene 41 helicase specifically at replication forks, and that its binding sites for each arm must hold more than six, but not more than 12 nucleotides. The 1.45 A resolution crystal structure of the full-length 217-residue monomeric T4 gene 59 helicase assembly protein reveals a novel alpha-helical bundle fold with two domains of similar size. Surface residues are predominantly basic (pI 9.37) with clusters of acidic residues but exposed hydrophobic residues suggest sites for potential contact with DNA and with other protein molecules. The N-terminal domain has structural similarity to the double-stranded DNA binding domain of rat HMG1A. We propose a speculative model of how the T4 gene 59 helicase assembly protein might bind to fork DNA based on the similarity to HMG1, the location of the basic and hydrophobic regions, and the site size of the fork arms needed for tight fork DNA binding. The fork-binding model suggests putative binding sites for the T4 gene 32 single-stranded DNA binding protein and for the hexameric T4 gene 41 helicase assembly.  相似文献   

13.
YqfO of Bacillus cereus is a member of the widespread Nif3 family of proteins, which has been highlighted as an important target for structural genomics. The N- and C-terminal domains are conserved across the family and contain a dimetal-binding motif in a putative active site. YqfO contains an insert in the middle of the protein, present in a minority of bacterial family members. The structure of YqfO was determined at a resolution of 2.2 A and reveals conservation of the putative active site. It also reveals the previously unknown structure of the insert, which despite extremely limited sequence conservation, bears great similarity to PII, CutA, and a number of other trimeric regulatory proteins. Our results suggest that this domain acts as a signal sensor to regulate the still-unknown catalytic activity of the more-conserved domains.  相似文献   

14.
We have identified a novel evolutionarily conserved protein motif - designated the THAP domain - that defines a new family of cellular factors. We have found that the THAP domain presents striking similarities with the site-specific DNA-binding domain (DBD) of Drosophila P element transposase, including a similar size, N-terminal location, and conservation of the residues that define the THAP motif, such as the C2CH signature (Cys-Xaa(2-4)-Cys-Xaa(35-50)-Cys-Xaa(2)-His). Our results suggest that the THAP domain is a novel example of a DBD that is shared between cellular proteins and transposases from mobile genomic parasites.  相似文献   

15.
We report the 1.9 ? resolution crystal structure of enteropathogenic Escherichia coli GfcC, a periplasmic protein encoded by the gfc operon, which is essential for assembly of group 4 polysaccharide capsule (O-antigen capsule). Presumed gene orthologs of gfcC are present in capsule-encoding regions of at least 29 genera of Gram-negative bacteria. GfcC, a member of the DUF1017 family, is comprised of tandem β-grasp (ubiquitin-like) domains (D2 and D3) and a carboxyl-terminal amphipathic helix, a domain arrangement reminiscent of that of Wza that forms an exit pore for group 1 capsule export. Unlike the membrane-spanning C-terminal helix from Wza, the GfcC C-terminal helix packs against D3. Previously unobserved in a β-grasp domain structure is a 48-residue helical hairpin insert in D2 that binds to D3, constraining its position and sequestering the carboxyl-terminal amphipathic helix. A centrally located and invariant Arg115 not only is essential for proper localization but also forms one of two mostly conserved pockets. Finally, we draw analogies between a GfcC protein fused to an outer membrane β-barrel pore in some species and fusion proteins necessary for secreting biofilm-forming exopolysaccharides.  相似文献   

16.
The ribosomal protein S17E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. S17E is a 62-residue protein conserved in archaea and eukaryotes and has no counterparts in bacteria. Mammalian S17E is a phosphoprotein component of eukaryotic ribosomes. Archaeal S17E proteins range from 59 to 79 amino acids, and are about half the length of the eukaryotic homologs which have an additional C-terminal region. Here we report the three-dimensional solution structure of S17E. S17E folds into a small three-helix bundle strikingly similar to the FF domain of human HYPA/FBP11, a novel phosphopeptide-binding fold. S17E bears a conserved positively charged surface acting as a robust scaffold for molecular recognition. The structure of M. thermoautotrophicum S17E provides a template for homology modeling of eukaryotic S17E proteins in the family.  相似文献   

17.
Eukaryotic ribosomes contain an acidic ribosomal protein of about 38 kDa which shows immunological cross-reactivity with the 13 kDa-type acidic ribosomal proteins that are related to L7/L12 of bacterial ribosomes. By using a cDNA clone for 38 kDa-type acidic ribosomal protein A0 from the yeast Saccharomyces cerevisiae, we have cloned a genomic DNA encoding A0 and determined the sequence of 1,614 nucleotides including about 500 nucleotides in the 5'-flanking region. The gene lacks introns and possesses two boxes homologous to upstream activation sequences (UASrpg) in the 5'-flanking region. The amino acid sequence of A0 deduced from the nucleotide sequence shows that A0 shares a highly similar carboxyl-terminal region of about 40 amino acids in length with 13 kDa-type acidic ribosomal proteins, including an identical carboxyl-terminal, DDDMGFGLFD. In the amino-terminal region A0 contains an arginine-rich segment which shows a low but distinct similarity to that of bacterial ribosomal protein L10 through which L10 is thought to bind to 23S rRNA. On the other hand, the carboxyl-terminal half of A0 is enriched with hydrophobic amino acid residues including four pairs of phenylalanine residues which are all conserved in a human homologue.  相似文献   

18.
19.
Antibiotics that inhibit ribosomal function may do so by one of several mechanisms, including the induction of incorrect RNA folding or prevention of protein and/or RNA conformational transitions. Thiostrepton, which binds to the ‘GTPase center’ of the large subunit, has been postulated to prevent conformational changes in either the L11 protein or rRNA to which it binds. Scintillation proximity assays designed to look at the binding of the L11 C-terminal RNA-binding domain to a 23S ribosomal RNA (rRNA) fragment, as well as the ability of thiostrepton to induce that binding, were used to demonstrate the role of Mg2+, L11 and thiostrepton in the formation and maintenance of the rRNA fragment tertiary structure. Experiments using these assays with both an Escherichia coli rRNA fragment and a thermostable variant of that RNA show that Mg2+, L11 and thiostrepton all induce the RNA to fold to an essentially identical tertiary structure.  相似文献   

20.
The assembly of ribonucleoprotein complexes occurs under a broad range of conditions, but the principles that promote assembly and allow function at high temperature are poorly understood. The ribosomal protein S8 from Aquifex aeolicus (AS8) is unique in that there is a 41-residue insertion in the consensus S8 sequence. In addition, AS8 exhibits an unusually high affinity for the 16S ribosomal RNA, characterized by a picomolar dissociation constant that is approximately 26,000-fold tighter than the equivalent interaction from Escherichia coli. Deletion analysis demonstrated that binding to the minimal site on helix 21 occurred at the same nanomolar affinity found for other bacterial species. The additional affinity required the presence of a three-helix junction between helices 20, 21, and 22. The crystal structure of AS8 was solved, revealing the helix-loop-helix geometry of the unique AS8 insertion region, while the core of the molecule is conserved with known S8 structures. The AS8 structure was modeled onto the structure of the 30S ribosomal subunit from E. coli, suggesting the possibility that the unique subdomain provides additional backbone and side-chain contacts between the protein and an unpaired base within the three-way junction of helices 20, 21, and 22. Point mutations in the protein insertion subdomain resulted in a significantly reduced RNA binding affinity with respect to wild-type AS8. These results indicate that the AS8-specific subdomain provides additional interactions with the three-way junction that contribute to the extremely tight binding to ribosomal RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号