首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethylene, light, and anthocyanin synthesis   总被引:5,自引:1,他引:4       下载免费PDF全文
Ethylene control of anthocyanin formation functions only through light-initiated synthesis pathways of the rapid synthesis phase. Treatment with ethylene in the dark had no effect on dark anthocyanin synthesis in red cabbage (Brassica oleracea L.). Pretreatment of both red cabbage and sorghum (Sorghum vulgare L.) with ethylene for 24 hours in the dark did increase the rate of synthesis when the tissue was placed in the light. Light-initiated anthocyanin synthesis is inhibited by ethylene when the tissue is returned to the dark.  相似文献   

2.
The use of metabolic inhibitors indicated that ethylene-enhancement of light-induced anthocyanin biosynthesis in Sorghum vulgare is through promotion of enzyme synthesis. Ethylene treatment had no effect on the amount of cyanidin synthesized in sorghum tissue infiltrated with actinomycin D to inhibit RNA synthesis. Treatment of sorghum tissue with ethylene in the dark for 24 hr prior to light-induction of anthocyanin biosynthesis reduced the ability of cycloheximide to inhibit anthocyanin formation in the tissue. Ethylene treatment promoted the biosynthesis of two 3-deoxyanthocyanidins in sorghum for which light-induced RNA synthesis is not necessary.  相似文献   

3.
Three compounds known to inhibit ethylene synthesis and/or action were compared for their ability to delay senescence and abscission of bean explants (Phaseolus vulgaris L. cv Contender). Aminoethoxyvinyl-glycine (AVG), AgNO3, and sodium benzoate were infiltrated into the petiole explants. Their effect on abscission was monitored by measuring the force required to break the abscission zone, and their effect on senescence was followed by measuring chlorophyll and soluble protein in the distal (pulvinus) sections. AVG at concentrations between 1 and 100 micromolar inhibited ethylene synthesis by about 80 to 90% compared to the control during sampling periods of 24 and 48 hours after treatment. This compound also delayed the development of abscission and senescence. Treatment with AgNO3 at concentrations between 1 and 100 micromolar progressively reduced ethylene production, but to a lesser extent than AVG. The effects of AgNO3 on senescence and abscission were quite similar to those of AVG. Sodium benzoate at 50 micromolar to 5 millimolar did not inhibit ethylene synthesis during the first 24 hours, but appreciably inhibited ethylene synthesis 48 hours after treatment. It also delayed the development of abscission and senescence. The effects of AVG, Ag+, and sodium benzoate suggest that ethylene could play a major role in both the senescence induction phase and the separation phase in bean explants.  相似文献   

4.
Ethylene production and floral senescence following compatible and incompatible pollinations were studied in a self-incompatible species, Petunia inflata. Both compatible and incompatible pollinations resulted in a burst of ethylene synthesis that peaked 3 hours after pollination. P. inflata pollen was found to carry large amounts of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). The amount of pollen-held ACC varied in different genetic backgrounds, and the magnitude of the peak correlated with the amount of ACC borne by the pollen. Aminooxyacetic acid (AOA), an inhibitor of ACC synthesis, had no inhibitory effect on this ethylene response, indicating that pollen-borne ACC was largely responsible for the early synthesis of ethylene. After compatible pollination, a second increase in ethylene synthesis began at 18 hours, and the first sign of senescence appeared at 36 hours. Upon treatment with AOA, the second phase of ethylene production was reduced by 95%, indicating that endogenous ACC synthesis was required for this phase of ethylene synthesis. AOA treatment also delayed senescence to 6 days after anthesis. After incompatible pollination, a second increase in ethylene production did not occur until 3 days, and the first sign of senescence occurred 12 hours later. Unpollinated flowers showed an increase in ethylene production 3 to 4 days after anthesis and displayed signs of senescence 1 day later. The significance of the early and late phases of pollination-induced ethylene synthesis is discussed.  相似文献   

5.
Anthocyanin synthesis, hair formation, and the synthesis of ascorbic acid oxidase are all phytochrome-mediated reactions occurring in the hypocotyl of mustard (Sinapis alba L.), controlled by phytochrome actually located in the hypocotyl. A comparison of these three reactions showed that in certain respects they differ greatly in their response to light. The ability of the seedling to respond to light by showing the three responses was strongly influenced by the state of development of the seedling. White light given very early after seed imbibition was unable to evoke any of the three reactions. By 50 hours after imbibition, all systems were fully inducible by light. The addition of actinomycin D to a fully competent seedling coincident with illumination strongly inhibited the development of all three responses. In contrast, the addition of cordycepin at this time inhibited the synthesis of anthocyanin and ascorbic acid oxidase but had no effect on hair formation. Cycloheximide inhibited all three responses when given up to several hours after light. This suggests the necessity for RNA and protein synthesis for light-induced expression of these reactions, and that the RNA species involved in the three reactions may have differing degrees of polyadenylation. The lag period between the onset of light and the first display of the response was 3 hours for anthocyanin and ascorbic acid oxidase synthesis, and about 5 hours for hair formation. Amounts of light sufficient to give large increases in the levels of ascorbic acid oxidase and hair formation gave a much smaller increase in anthocyanin synthesis. Hair formation and ascorbic acid oxidase synthesis showed a much greater sensitivity to induction at early stages of seedling development than did anthocyanin synthesis. Following an inductive light period, anthocyanin synthesis was sensitive to far red light inhibition for a period twice as long as the other two reactions. The differences in the response of the three reactions to light suggest that the phytochrome-mediated reactions which control their development also differ.  相似文献   

6.
Role of ethylene in phytochrome-induced anthocyanin synthesis   总被引:3,自引:1,他引:2  
Bin G. Kang  Stanley P. Burg 《Planta》1973,110(3):227-235
Summary Synthesis of anthocyanin pigments in etiolated cabbage seedlings is influenced by ethylene at concentrations higher than 10 ppb, and etiolated seedlings produce sufficient ethylene to influence their anthocyanin synthesis. When escape of endogenous ethylene from this tissue is enhanced by means of hypobaric treatment, anthocyanin synthesis is accelerated. Stimulation of anthocyanin synthesis by brief red illumination is completely prevented by applied ethylene and indoleacetic acid inhibits anthocyanin synthesis by stimulating ethylene production. Red light reduces endogenous as well as auxin-induced ethylene production and there is a close correlation between light-induced inhibition of ethylene synthesis and stimulation of anthocyanin formation. We suggest that in part photo-induced anthocyanin synthesis is due to a lowered ethylene content in light-treated tissue.  相似文献   

7.
Three types of whole plant experiments are presented to substantiate the concept that an important function of ethylene in abscission is to reduce the transport of auxin from the leaf to the abscission zone. (a) The inhibitory effect of ethylene on auxin transport, like ethylene-stimulated abscission, persists only as long as the gas is continuously present. Cotton (Gossypium hirsutum L. cv. Stoneville 213) and bean (Phaseolus vulgaris L. cv. Resistant Black Valentine) plants placed in 14 μl/l of ethylene for 24 or 48 hours showed an increase in leaf abscission and a reduced capacity to transport auxin; but when returned to air, auxin transport gradually increased and abscission ceased. (b) Ethylene-induced abscission and auxin transport inhibition show similar sensitivities to temperature. A 24-hour exposure of cotton plants to 14 μl/l of ethylene at 8 C resulted in no abscission and no significant inhibition of auxin transport. Increasing the temperature during ethylene treatment resulted in a progressively greater reduction in auxin transport with abscission occurring at [unk]27 C where auxin transport was inhibited over 70%. (c) Auxin pretreatment reduced both ethylene-induced abscission and auxin transport inhibition. No abscission occurred, and auxin transport was inhibited only 18% in cotton plants which were pretreated with 250 mg/l of naphthalene acetic acid and then placed in 14 μl/l of ethylene for 24 hours. In contrast, over 30% abscission occurred, and auxin transport was inhibited 58% in the corresponding control plants.  相似文献   

8.
Wound-induced ethylene synthesis by subapical stem sections of etiolated Pisum sativum L., cv. Alaska seedlings, as described by Saltveit and Dilley (Plant Physiol 1978 61: 447-450), was half-saturated at 3.6% (v/v) O2 and saturated at about 10% O2. Corresponding values for CO2 production during the same period were 1.1% and 10% O2, respectively. Anaerobiosis stopped all ethylene evolution and delayed the characteristic pattern of wound ethylene synthesis. Exposing tissue to 3.5% CO2 in air in a flow-through system reduced wound ethylene synthesis by 30%. Enhancing gas diffusivity by reducing the total pressure to 130 mm Hg almost doubled the rate of wound ethylene synthesis and this effect was negated by exposure to 250 μl liter−1 propylene. Applied ethylene or propylene stopped wound ethylene synthesis during the period of application, but unlike N2, no lag period was observed upon flushing with air. It is concluded that the characteristic pattern of wound-induced ethylene synthesis resulted from negative feedback control by endogenous ethylene.

No wound ethylene was produced for 2 hours after excision at 10 or 38 C. Low temperatures prolonged the lag period, but did not prevent induction of the wound response, since tissue held for 2 hours at 10 C produced wound ethylene immediately when warmed to 30 C. In contrast, temperatures above 36 C prevented induction of wound ethylene synthesis, since tissue cooled to 30 C after 1 hour at 40 C required 2 hours before ethylene production returned to normal levels. The activation energy between 15 and 36 C was 12.1 mole kilocalories degree−1.

  相似文献   

9.
Five-day-old etiolated cucumber (Cucumis sativus L. var. Alpha Green) cotyledons produced more chlorophyll over a 4-hour illumination period after a prolonged exposure (12 to 72 hours) in the dark to ethylene concentrations ranging from 0.1 to 10 μl/l. Intact seedlings and excised cotyledons responded in the same way to this treatment. This effect does not involve a shortening of the lag phase of chlorophyll accumulation. Exposure of cotyledons to ethylene during the illumination period did not produce the same stimulatory effect on chlorophyll synthesis and, under certain conditions, chlorophyll synthesis was slightly inhibited by exposure to ethylene in the light.  相似文献   

10.
Avocado (Persea americana Mill. cv Hass) discs (3 mm thick) ripened in approximately 72 hours when maintained in a flow of moist air and resembled ripe fruit in texture and taste. Ethylene evolution by discs of early and midseason fruit was characterized by two distinct components, viz. wound ethylene, peaking at approximately 18 hours, and climacteric ethylene, rising to a peak at approximately 72 hours. A commensurate respiratory stimulation accompanied each ethylene peak. Aminoethoxyvinyl glycine (AVG) given consecutively, at once and at 24 hours following disc preparation, prevented wound and climacteric respiration peaks, virtually all ethylene production, and ripening. When AVG was administered for the first 24 hours only, respiratory stimulation and softening (ripening) were retarded by at least a day. When AVG was added solely after the first 24 hours, ripening proceeded as in untreated discs, although climacteric ethylene and respiration were diminished. Propylene given together with AVG led to ripening under all circumstances. 2,5-Norbornadiene given continuously stimulated wound ethylene production, and it inhibited climacteric ethylene evolution, the augmentation of ethylene-forming enzyme activity normally associated with climacteric ethylene, and ripening. 2,5-Norbornadiene given at 24 hours fully inhibited ripening. When intact fruit were pulsed with ethylene for 24 hours before discs were prepared therefrom, the respiration rate, ethylene-forming enzyme activity buildup, and rate of ethylene production were all subsequently enhanced. The evidence suggests that ethylene is involved in all phases of disc ripening. In this view, wound ethylene in discs accelerates events that normally take place over an extended period throughout the lag phase in intact fruit, and climacteric ethylene serves the same ripening function in discs and intact fruit alike.  相似文献   

11.
Iron nutrition-mediated chloroplast development   总被引:4,自引:2,他引:2       下载免费PDF全文
Membrane development in chloroplasts was explored by resupplying iron to iron-deficient sugar beet (Beta vulgaris L. cv F58-554H1) and monitoring changes in lamellar components during regreening. The synthesis of chlorophyll a, chlorophyll b, and Q, the first stable electron acceptor of photosystem II, exhibited a lag phase during the first 24 to 48 hours of resupply. In contrast, the per area amounts of P700 and cytochrome f increased linearly over the first 48 hours. During the early regreening period, the Q to P700 ratio was 2.6 and decreased to 0.7 after 96 hours of regreening. The rate of photosynthesis (net CO2 uptake) per chlorophyll increased during the first 48 hours of resupply, then by 96 hours decreased to values typical of control plants. The results suggest that there was preferential synthesis of the measured photosystem I components during the first 24 to 48 hours, while from 48 to 96 hours there was rapid synthesis of all components. The iron nutrition-mediated chloroplast development system provides a useful experimental approach for studying biomembrane synthesis and structural-functional relations of the photosynthetic apparatus.  相似文献   

12.
The intact fruits of preclimacteric tomato (Lycopersicon esculentum Mill) or cantaloupe (Cucumis melo L.) produced very little ethylene and had low capability of converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. When these unripe tomato or cantaloupe fruits were treated with ethylene for 16 hours there was no increase in ACC content or in ethylene production rate, but the tissue's capability to convert ACC to ethylene increased markedly. Such an effect was also observed in fruits of tomato mutants rin and nor, which do not undergo ripening and the climacteric increase in ethylene production during the senescence. The development of this ethylene-forming capability induced by ethylene increased with increasing ethylene concentration (from 0.1 to 100 microliters per liter) and duration (1 to 24 hours); when ethylene was removed this capability remained high for sometime (more than 24 hours). Norbornadiene, a competitive inhibitor of ethylene action, effectively eliminated the promotive effect of ethylene in tomato fruit. These data indicate that the development of the capability to convert ACC to ethylene in preclimacteric tomato and cantaloupe fruits are sensitive to ethylene treatment and that when these fruits are exposed to exogenous ethylene, the increase in ethylene-forming enzyme precedes the increase in ACC synthase.  相似文献   

13.
Evidence is given that a selective light-pretreatment of the embryonic axis exerts a deep influence on the greening in primary leaves of 8-day-old etiolated bean seedlings (Phaseolus vulgaris cv. Limburg). After a subsequent dark incubation of sufficient length and a final exposure of the entire plants to continuous illumination the lag phase of chlorophyll synthesis is completely removed. In particular the highly meristematic hook tissue seems to be responsible for this light effect. Lengthening of the dark period following pre-irradiation increased the capability of chlorophyll production in the main white light period, reaching its maximum after about 12 hours of darkness. The period of dark incubation for elimination of the lag phase is considerably longer in plants with shielded leaves than the length of the lag phase in etiolated seedlings of the same age, exposed entirely to continuous light. This difference may be explained by the synergistic effect between leaves and embryonic axis. Evidence for this interorgan cooperation is given by experiments with a selective light-pretreatment of leaves and embryonic axis. After a 5 min pre-exposure to white light of whole plants the leaves of some of the plants were shielded and these plants received a further pre-illumination of 2 hours on their embryonic axis. In all the pre-irradiated, etiolated plants the lag phase of chlorophyll synthesis was eliminated during the main white light period, following a dark incubation of 2 hours. Additional and preferential light activation of the embryonic axis during the pretreatment had no significant effect on chlorophyll production during the white light illumination after a 2 hours dark incubation, but resulted in a lower yield of chlorophylls after 18 hours dark incubation compared to the white light controls, receiving no selective light-pretreatment on the embryonic axis. From our results we can decisively conclude that a simultaneous light-pretreatment of both, leaves and embryonic axis, is more effective and beneficial for building up a capacity of chlorophyll synthesis in the leaves than either a selective light-pretreatment of the embryonic axis alone or a simultaneous pre-illumination of leaves and embryonic axis, immediately followed by an additional preirradiation of the embryonic axis. Therefore, we think that several photoactive sites are involved in de-etiolation processes of intact, etiolated seedings. Light activation of the embryonic axis stimulates the development of this organ and contributes to the greening processes in the leaf. At the same time, by irradiating the leaf, light activates the photo-sensitive site in the leaf itself, which also develops a capacity for chlorophyll synthesis. Both photo-acts are cooperative, explaining the enhanced chlorophyll production. Additional pre-irradiation of the embryonic axis after a short illumination of whole plants favours its own development and reduces the synthetic capacity of the leaf. A prolonged far-red pretreatment induces qualitatively the same response as white light. We assume that these effects on lag phase removal and chlorophyll production, induced in etiolated, primary bean leaves by selective irradiation of the embryonic axis, is a phytochrome-mediated process. Our results indicate a transmission of light-induced stimuli from one organ to another.  相似文献   

14.
Bassi PK  Spencer MS 《Plant physiology》1982,69(5):1222-1225
High CO2 concentration (0.5%) increased the rate of ethylene production, measured in a continuous flow system, in intact sunflower (Helianthus annuus L.) plants. However, the rate of ethylene production subsided to near control levels after approximately 24 hours. The effect of high CO2 could only be observed in light. Although high CO2 concentration had no effect on the rate of ethylene production in darkness, prolonged exposure (approximately 16 hours) of plants to high CO2 in the dark prevented the increase in ethylene production when the plants were exposed to light and high CO2.  相似文献   

15.
Li PH  Weiser CJ 《Plant physiology》1973,52(6):685-687
Bark tissues of Cornus stolonifera stems, treated with cysteine at 24 hours after treatment, survived exposure to −11 C (the tissue temperature) with little or no injury. An initiation of increase in the cold tolerance was usually observed when plants were treated with cysteine at 12 hours after treatment. Neither plants at 36 or 48 hours after treatment nor plants 12 hours before treatment had shown increases in the cold tolerance. They were killed below −5 C, which was the survival temperature of untreated control plants. Two weeks or more of short day induction before cysteine application were required for a significant effect of short term 5 C increase in the cold tolerance.  相似文献   

16.
Ethylene and Ethane Production from Sulfur Dioxide-injured Plants   总被引:8,自引:4,他引:4       下载免费PDF全文
After alfalfa (Medicago sativa) seedlings were exposed to approximately 0.7 microliter per liter SO2 for 8 hours, elevated ethylene and ethane production was observed. Ethylene production peaked about 6 hours and returned to control levels by about 24 hours following the fumigation, while ethane production peaked about 36 hours and was still above control levels 48 hours after the fumigation. Light had an opposite effect upon the production of the two gases: ethane production rates were higher from plants held in light, whereas ethylene production rates were higher from those held in the dark. Peak ethylene and ethane production rates from SO2-treated plants were about 10 and 4 to 5 times greater, respectively, than those of the control plants. Ethylene appeared to be formed primarily from stressed yet viable leaves and ethane from visibly damaged leaves. The different time courses and light requirements for ethylene and ethane production suggest that these two gases were formed via different mechanisms. Light appears to have a dual role. It enhances SO2-induced cellular damage and plays a role for repairs.  相似文献   

17.
Turnip seedlings (Brassica rapa L.) irradiated for 24 hours with radiation at 720 nanometers synthesize chlorophyll a and anthocyanin. Antimycin A and 2,4-dinitrophenol, which are known to reduce cyclic photophosphorylation, also reduce anthocyanin synthesis. Noncyclic photophosphorylation is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and o-phenanthroline. These compounds promote cyclic photophosphorylation and anthocyanin synthesis. On the basis of these findings it is suggested that the photomorphogenic response of anthocyanin synthesis in turnip seedlings arises in part through photosynthetic activity.  相似文献   

18.
Euglena cells, strains Z and bacillaris, were grown in the dark under various nutritional deficiencies. After 3 days of nondivision, cells were transferred to the light, and the following parameters were measured: the paramylum content at the time of illumination (zero time), the rate of paramylum consumption during the first 10 hours of greening, and the length of the lag phase of chlorophyll synthesis. Similar results were obtained with both strains and can be summarized as follows. (a) The use of various nutritional deficiencies allows the control, to a certain extent, of the amount of paramylum present at zero time. (b) The rate of paramylum consumption is proportional to the cellular paramylum content for values in excess of 50 picograms/cell. (c) The length of the lag phase increases rapidly when the cellular content of paramylum decreases below 50 picograms. This period can be greatly diminished by the addition of an exogenous organíc carbon source. (d) The amount of paramylum (rate of paramylum consumption × length of lag phase) consumed during the lag phase is around 5 to 10 picograms/cell for cells which contain less than 50 picograms of paramylum/cell. It increases when the cellular paramylum content increases, this increment being more rapid for bacillaris than for Z cells.  相似文献   

19.
The effect of plant water deficit on ethylene production by intact plants was tested in three species, beans (Phaseolus vulgaris L.), cotton (Gossypium hirsutum L.) and miniature rose (Rosa hybrida L., cv Bluesette). Compressed air was passed through glass, plant-containing cuvettes, ethylene collected on chilled columns, and subsequently assayed by gas chromatography. The usual result was that low water potential did not promote ethylene production. When plants were subjected to cessation of irrigation, ethylene production decreased on a per plant or dry weight basis of calculation. No significant promotion of ethylene production above control levels was detected when water deficit-treated bean or cotton plants were rewatered. The one exception to this was for cotton subjected to a range of water deficits, plants subjected to deficits of −1.4 to −1.6 MPa exhibited a transient increase of ethylene production of 40 to 50% above control levels at 24 or 48 hours. Ethylene was collected from intact leaves while plants developed a water deficit stress of −2.9 megapascals after rewatering, and no significant promotion of ethylene production was detected. The shoots of fruited, flowering cotton plants produced less ethylene when subjected to cessation of irrigation. In contrast, the ability of bench drying of detached leaves to increase ethylene production several-fold was verified for both beans and cotton. The data indicate that detached leaves react differently to rapid drying than intact plants react to drying of the soil with regard to ethylene production. This result suggests the need for additional attention to ethylene as a complicating factor in experiments employing excised plant parts and the need to verify the relevance of shock stresses in model systems.  相似文献   

20.
A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L.

Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves.

Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability.

An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号