首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Salmonella typhimurium is a facultative intracellular pathogen that colonizes host cells throughout the course of infection. A unique feature of this pathogen is its ability to enter into (invade) epithelial cells and elongate the vacuole within which it resides into tubular structures called Salmonella-induced filaments (Sifs). In this study we sought to characterize the mechanism of Sif formation by immunofluorescence analysis using subcellular markers. The late endosomal lipid lysobisphosphatidic acid associated in a punctate pattern with the Salmonella-containing vacuole, starting 90 min after infection and increasing thereafter. Lysobisphosphatidic acid-rich vesicles were also found to interact with Sifs, at numerous sites along the tubules. Similarly, cholesterol-rich vesicles were also found in association with intracellular bacteria and Sifs. The lysosomal hydrolase cathepsin D was present in Sifs, both in a punctate pattern and, at later times, predominantly in an uninterrupted linear pattern. Rab7 associated with Sifs and expression of the N125I dominant negative mutant of this GTPase inhibited Sif formation. Transfection of HeLa cells with a vector encoding SifA fused to the green fluorescent protein caused swelling and aggregation of lysobisphosphatidic acid-containing compartments, suggesting that this virulence factor directs membrane fusion events involving late endosomes. Our findings demonstrate that Sif formation involves fusion of late endocytic compartments with the Salmonella-containing vacuole, and suggest that SifA modulates this event.  相似文献   

2.
Trafficking kinesin proteins (TRAKs) 1 and 2 are kinesin-associated proteins proposed to function in excitable tissues as adaptors in anterograde trafficking of cargoes including mitochondria. They are known to associate with N-acetylglucosamine transferase and the mitochondrial rho GTPase, Miro. We used confocal imaging, Förster resonance energy transfer and immunoprecipitations to investigate association between TRAKs1/2, N-acetylglucosamine transferase, the prototypic kinesin-1, KIF5C, and Miro. We demonstrate that in COS-7 cells, N-acetylglucosamine transferase, KIF5C and TRAKs1/2 co-distribute. Förster resonance energy transfer was observed between N-acetylglucosamine transferase and TRAKs1/2. Despite co-distributing with KIF5C and immunoprecipitations demonstrating a TRAK1/2, N-acetylglucosamine transferase and KIF5C ternary complex, no Förster resonance energy transfer was detected between N-acetylglucosamine transferase and KIF5C. KIF5C, N-acetylglucosamine transferase, TRAKs1/2 and Miro formed a quaternary complex. The presence of N-acteylglucosamine transferase partially prevented redistribution of mitochondria induced by trafficking proteins 1/2 and KIF5C. TRAK2 was a substrate for N-acetylglucosamine transferase with TRAK2 (S562) identified as a site of O-N-acetylglucosamine modification. These findings substantiate trafficking kinesin proteins as scaffolds for the formation of a multi-component complex involved in anterograde trafficking of mitochondria. They further suggest that O-glycosylation may regulate complex formation.  相似文献   

3.
SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are the core machinery of membrane fusion. Vesicular SNAREs (v-SNAREs) interact with their target SNAREs (t-SNAREs) to form SNARE complexes which mediate membrane fusion. Here we review the basic properties and functions of the v-SNARE TI-VAMP/VAMP7 (Tetanus neurotoxin insensitive-vesicle associated membrane protein). TI-VAMP interacts with its t-SNARE partners, particularly plasmalemmal syntaxins, to mediate membrane fusion and with several regulatory proteins especially via its amino-terminal regulatory Longin domain. Partners include AP-3, Hrb/(Human immunodeficiency virus Rev binding) protein, and Varp (Vps9 domain and ankyrin repeats containing protein) and regulate TI-VAMP’s function and targeting. TI-VAMP is involved both in secretory and endocytic pathways which mediate neurite outgrowth and synaptic transmission, plasma membrane remodeling and lysosomal secretion.  相似文献   

4.
Tanaka T  Baba H  Hori Y  Kikuchi Y 《FEBS letters》2001,491(1-2):94-98
We developed a guide DNA technique with which the cleavage efficiency of pre-tRNA substrate raised in the RNase P reaction. The 20-mer guide DNAs hybridizing to the upstream region of the cleaving site enhanced the cleavage reactions of RNA substrates by Escherichia coli RNase P. This guide DNA technique was also applicable to cleavage site selection by choosing the DNA-hybridizing site. Results showed that RNase P accepts DNA/RNA double-stranded 5'-leader region with high catalytic efficiency as well as single-stranded RNA region in pre-tRNAs as substrates, which suggests that the protein component of bacterial RNase P prefers bulky nucleotides. The protein component did not affect the normal 5'-processing reaction of pre-tRNAs, but enhanced the mis-cleaving (hyperprocessing) reactions of tRNA in non-cloverleaf folding. Our results suggested that the protein component of RNase P is a modifier for substrate recognition.  相似文献   

5.
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.  相似文献   

6.
NMDA (N-methyl-D-aspartate) receptors (NMDARs) are targeted to dendrites and anchored at the post-synaptic density (PSD) through interactions with PDZ proteins. However, little is known about how these receptors are sorted from the endoplasmic reticulum and Golgi apparatus to the synapse. Here, we find that synapse-associated protein 102 (SAP102) interacts with the PDZ-binding domain of Sec8, a member of the exocyst complex. Our results show that interactions between SAP102 and Sec8 are involved in the delivery of NMDARs to the cell surface in heterologous cells and neurons. Furthermore, they suggest that an exocyst-SAP102-NMDAR complex is an important component of NMDAR trafficking.  相似文献   

7.
Salmonella enterica serovar Typhimurium is an intracellular pathogen that grows within a modified endomembrane compartment, the Salmonella‐containing vacuole (SCV). Maturation of nascent SCVs involves the recruitment of early endosome markers and the remodelling of phosphoinositides at the membrane of the vacuole, in particular the production of phosphatidylinositol 3‐phosphate [PI(3)P]. Sorting nexins (SNXs) are a family of proteins characterized by the presence of a phox homology (PX) domain that binds to phosphoinositides and are involved in intracellular trafficking in eukaryotic cells. We therefore studied whether sorting nexins, particularly sorting nexin 3 (SNX3), play a role in Salmonella infection. We found that SNX3 transiently localized to SCVs at early times post invasion (10 min) and presented a striking tubulation phenotype in the vicinity of SCVs at later times (30–60 min). The bacterial effector SopB, which is known to promote PI(3)P production on SCVs, was required for the formation of SNX3 tubules. In addition, RAB5 was also required for the formation of SNX3 tubules. Depletion of SNX3 by siRNA impaired RAB7 and LAMP1 recruitment to the SCV. Moreover, the formation of Salmonella‐induced filaments (Sifs) was altered by SNX3 knock‐down. Therefore, SNX3 plays a significant role in regulating the maturation of SCVs.  相似文献   

8.
The retrograde membrane transport pathways from endosomes to the trans-Golgi network (TGN) are now recognized as critical intracellular pathways to recycle and shuttle a selective subgroup of membrane proteins, including sorting receptors, membrane-bound enzymes, transporters, as well as providing an avenue for the intracellular transport of various bacterial toxins. Multiple pathways from endosomes to the TGN have now been defined which differ between the cargo transported and the machinery used. Here, we review advances in these pathways and the requirement for TGN organization, and also discuss the development of unbiased analytical approaches to quantitatively track cargo that use these endosome-to-TGN pathways.  相似文献   

9.
Oleate, the most abundant endogenous and dietary cis-unsaturated fatty acid, has the atypical property to cause the redistribution of microtubule-associated proteins 1A/1B light chain 3B (referred to as LC3) to the trans-Golgi network (TGN), as shown here. A genome-wide screen identified multiple, mostly Golgi transport-related genes specifically involved in the oleate-induced relocation of LC3 to the Golgi apparatus. Follow-up analyses revealed that oleate also caused the retention of secreted proteins in the TGN, as determined in two assays in which the secretion of proteins was synchronized, (i) an assay involving a thermosensitive vesicular stomatitis virus G (VSVG) protein that is retained in the endoplasmic reticulum (ER) until the temperature is lowered, and (ii) an isothermic assay involving the reversible retention of the protein of interest in the ER lumen and that was used both in vitro and in vivo. A pharmacological screen searching for agents that induce LC3 aggregation at the Golgi apparatus led to the identification of “oleate mimetics” that share the capacity to block conventional protein secretion. In conclusion, oleate represents a class of molecules that act on the Golgi apparatus to cause the recruitment of LC3 and to stall protein secretion.Subject terms: Autophagy, Proteins  相似文献   

10.
Protozoan parasites represent major public health challenges. Many aspects of their cell biology are distinct from their animal hosts, providing potential therapeutic targets. Toxoplasma gondii is a protozoan parasite that contains a divergent regulator of chromosome condensation 1 (TgRCC1) that is required for virulence and efficient nuclear trafficking. RCC1 proteins function as a guanine exchange factor for Ras-related nuclear protein (Ran), an abundant GTPase responsible for the majority of nucleocytoplasmic transport. Here we show that while there are dramatic differences from well-conserved RCC1 proteins, TgRCC1 associates with chromatin, interacts with Ran and complements a mammalian temperature-sensitive RCC1 mutant cell line. During the investigation of TgRCC1, we observed several unprecedented phenotypes for TgRan, despite a high level of sequence conservation. The cellular distribution of TgRan is found throughout the parasite cell, whereas Ran in late branching eukaryotes is predominantly nuclear. Additionally, T. gondii tolerates at least low-level expression of dominant lethal Ran mutants. Wild type parasites expressing dominant negative TgRan grew similarly to wild type in standard tissue culture conditions, but were attenuated in serum-starved host cells and mice. These growth characteristics paralleled the TgRCC1 mutant and highlight the importance of the nuclear transport pathway for virulence of eukaryotic pathogens.  相似文献   

11.
Jing L  Jiang YQ  Jiang Q  Wang B  Chu XP  Zha XM 《PloS one》2011,6(10):e26909
Acid-sensing ion channel-1a (ASIC1a), the primary proton receptor in the brain, contributes to multiple diseases including stroke, epilepsy and multiple sclerosis. Thus, a better understanding of its biogenesis will provide important insights into the regulation of ASIC1a in diseases. Interestingly, ASIC1a contains a large, yet well organized ectodomain, which suggests the hypothesis that correct formation of domain-domain interactions at the extracellular side is a key regulatory step for ASIC1a maturation and trafficking. We tested this hypothesis here by focusing on the interaction between the first transmembrane domain (TM1) and the thumb of ASIC1a, an interaction known to be critical in channel gating. We mutated Tyr71 and Trp287, two key residues involved in the TM1-thumb interaction in mouse ASIC1a, and found that both Y71G and W287G decreased synaptic targeting and surface expression of ASIC1a. These defects were likely due to altered folding; both mutants showed increased resistance to tryptic cleavage, suggesting a change in conformation. Moreover, both mutants lacked the maturation of N-linked glycans through mid to late Golgi. These data suggest that disrupting the interaction between TM1 and thumb alters ASIC1a folding, impedes its glycosylation and reduces its trafficking. Moreover, reducing the culture temperature, an approach commonly used to facilitate protein folding, increased ASIC1a glycosylation, surface expression, current density and slowed the rate of desensitization. These results suggest that correct folding of extracellular ectodomain plays a critical role in ASIC1a biogenesis and function.  相似文献   

12.
13.
Reticulons (RTNs) constitute a family of endoplasmic reticulum (ER)-associated proteins with a reticular distribution. Despite the implication of their neuronal isoforms in axonal regeneration, the function of their widely expressed isoforms is largely unknown. In this study, we examined the role of the ubiquitously expressed RTN3 in membrane trafficking. Ectopically expressed RTN3 exhibited heterogeneous patterns; filamentous, reticular, and granular distributions. The ER morphology changed accordingly. In cells where RTN3 displayed a filamentous/reticular distribution, protein transport between the ER and Golgi was blocked, and Golgi proteins were dispersed. In contrast, ERGIC-53, a marker for the ER-Golgi intermediate compartment, accumulated at the perinuclear region, and remained there even after cells were treated with agents that induce redistribution of Golgi proteins to the ER, indicating an inhibition of Golgi-to-ER transport of ERGIC-53. These results suggest that RTN3 plays a role in membrane trafficking in the early secretory pathway.  相似文献   

14.
BackgroundTwo component signalling involves interaction between sensor kinase (SK) and response regulator (RR) proteins which depends on their phosphorylation status.MethodsIn this study we report the development of an in vitro FRET assay for studying interaction between fluorescently tagged SK and RR proteins.ResultsUsing TCS proteins of Mycobacterium tuberculosis, we demonstrate that phosphorylation status of SK affects the SK–RR interaction, which varies from one TCS to another. The observation was strengthened by recordings from mutant SK and RR proteins. The assay retained the specificity/crosstalk potential of the participating proteins and reflected the inherent phosphotransfer potentials.ConclusionsSK and RR proteins interact with each other in unphosphorylated state and the phosphorylation affects the interaction between SK and RR, which was reflected as reduction in FRET ratio.General significanceA non-radioactive, in vitro FRET based assay is reported, which can be utilized for studying genome-wide partner screening, identifying crosstalk or specificity in TCSs.  相似文献   

15.
A key challenge in microbiome research is to predict the functionality of microbial communities based on community membership and (meta)-genomic data. As central microbiota functions are determined by bacterial community networks, it is important to gain insight into the principles that govern bacteria-bacteria interactions. Here, we focused on the growth and metabolic interactions of the Oligo-Mouse-Microbiota (OMM12) synthetic bacterial community, which is increasingly used as a model system in gut microbiome research. Using a bottom-up approach, we uncovered the directionality of strain-strain interactions in mono- and pairwise co-culture experiments as well as in community batch culture. Metabolic network reconstruction in combination with metabolomics analysis of bacterial culture supernatants provided insights into the metabolic potential and activity of the individual community members. Thereby, we could show that the OMM12 interaction network is shaped by both exploitative and interference competition in vitro in nutrient-rich culture media and demonstrate how community structure can be shifted by changing the nutritional environment. In particular, Enterococcus faecalis KB1 was identified as an important driver of community composition by affecting the abundance of several other consortium members in vitro. As a result, this study gives fundamental insight into key drivers and mechanistic basis of the OMM12 interaction network in vitro, which serves as a knowledge base for future mechanistic in vivo studies.Subject terms: Microbiome, Microbial ecology  相似文献   

16.
The adaptor complexes AP-1 and AP-3 are localized to endosomes and/or the trans Golgi network (TGN). Because of limitations in analysing intracellular adaptor function directly, their site of function is a matter of ongoing uncertainty. To overcome this problem and to analyse adaptor sorting at the TGN, we reconstituted vesicle formation from Golgi/TGN-enriched membranes in a novel in vitro budding assay. Melanocytes were metabolically labelled followed by a 19°C temperature block to accumulate newly synthesized proteins in Golgi membranes, which were then enriched by subcellular fractionation and used as donor membranes for vesicle formation in vitro . The incorporation of the melanosomal proteins tyrosinase and tyrosinase-related protein 1 (TRP-1) as well as Lamp-1 and 46 kDa mannose-6-phosphate receptor (MPR46) into Golgi/TGN-derived vesicles was temperature, nucleotide, cytosol, ADP ribosylation factor 1 and adaptor dependent. We show that sorting of TRP-1 and MPR46 was AP-1 dependent, while budding of tyrosinase and Lamp-1 required AP-3. Depletion of clathrin inhibited sorting of all four cargo proteins, suggesting that AP-1 and AP-3 are involved in the formation of distinct types of clathrin-coated vesicles, each of which is characterized by the incorporation of specific cargo membrane proteins.  相似文献   

17.
Mutations of the TSC2 gene lead to the development of hamartomas in tuberous sclerosis complex. Their pathology exhibits features indicative of defects in cell growth, proliferation, differentiation, and migration. We have previously shown that tuberin, the TSC2 protein, resides in multiple subcellular compartments and as such may serve multiple functions. To further characterize the microsomal pool of tuberin, we found that it cofractionated with caveolin-1 in a low-density, Triton X-100-resistant fraction (i.e., lipid rafts) and regulated its localization. In cells lacking tuberin, most of the endogenous caveolin-1 was displaced from the plasma membrane to a Brefeldin-A-sensitive, post-Golgi compartment distinct from the endosome and lysosome. Correspondingly, there was a paucity of caveolae at the plasma membrane of Tsc2-/- cells. Reintroduction of TSC2, but not a disease-causing mutant, reversed the caveolin-1 localization to the membrane. Exogenously expressed caveolin-1-GFP and vesicular stomatitis virus G protein, VSVG-GFP in the Tsc2-/- cells failed to be transported to the plasma membrane and were retained in distinct post-Golgi vesicles. Our data suggest a role of tuberin in regulating post-Golgi transport without apparent effects on protein sorting. The presence of mislocalized proteins in Tsc2-/- cells may contribute to the abnormal signaling and cellular phenotype of tuberous sclerosis.  相似文献   

18.
19.
Notch is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell-fate decisions. Endocytic trafficking of Notch plays important roles in the activation and downregulation of this receptor. A Drosophila O-FucT-1 homolog, encoded by O-fut1, catalyzes the O-fucosylation of Notch, a modification essential for Notch signaling and ligand binding. It was recently proposed that O-fut1 acts as a chaperon for Notch in the endoplasmic reticulum and is required for Notch to exit the endoplasmic reticulum. Here, we report that O-fut1 has additional functions in the endocytic transportation of Notch. O-fut1 was indispensable for the constitutive transportation of Notch from the plasma membrane to the early endosome, which we show was independent of the O-fucosyltransferase activity of O-fut1. We also found that O-fut1 promoted the turnover of Notch, which consequently downregulated Notch signaling. O-fut1 formed a stable complex with the extracellular domain of Notch. In addition, O-fut1 protein added to conditioned medium and endocytosed was sufficient to rescue normal Notch transportation to the early endosome in O-fut1 knockdown cells. Thus, an extracellular interaction between Notch and O-fut1 is essential for the normal endocytic transportation of Notch. We propose that O-fut1 is the first example, except for ligands, of a molecule that is required extracellularly for receptor transportation by endocytosis.  相似文献   

20.
Abl is an essential regulator of cell migration and morphogenesis in both vertebrates and invertebrates. It has long been speculated that the adaptor protein Disabled (Dab), which is a key regulator of neuronal migration in the vertebrate brain, might be a component of this signaling pathway, but this idea has been controversial. We now demonstrate that null mutations of Drosophila Dab result in phenotypes that mimic Abl mutant phenotypes, both in axon guidance and epithelial morphogenesis. The Dab mutant interacts genetically with mutations in Abl, and with mutations in the Abl accessory factors trio and enabled (ena). Genetic epistasis tests show that Dab functions upstream of Abl and ena, and, consistent with this, we show that Dab is required for the subcellular localization of these two proteins. We therefore infer that Dab is a bona fide component of the core Abl signaling pathway in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号