首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six isonitrogenous (gross protein content 35%) and isoenergetic (gross energy content 17 kJ g−1) diets were formulated to investigate the effects of inclusion of plant proteins on the gibel carp ( Carassius auratus gibelio L.). The plant proteins tested were: soybean cake (SBC), potato protein concentrate (PPC), peanut cake (PNC), cottonseed cake (CSC) and rapeseed cake (RSC). Fish meal (FM) was used as control. In each diet, 27% of the protein was supplied by fish meal, and the rest supplied by the plant protein tested. Each diet was fed to three groups of gibel carp for 8 weeks in a recirculation system. Specific growth rate (SGR) in fish fed the control diet was significantly higher than those in the other groups, and SGR in fish fed the PPC was significantly lower than in fish fed other plant proteins. There was no significant difference in SGR among the other groups. Feeding rates were ranked in the order: RSC > CSC > FM > PNC > SBC > PPC. Conversion efficiency was highest in groups fed FM, SBC and PNC, followed by groups fed CSC and RSC, and was lowest in the group fed PPC. The fish fed PPC showed lower protein retention than those fed FM and SBC. FM showed highest energy retention while PPC showed lowest. There was no significant relationship between SGR and intake of digestible protein (g g−1 day−1), digestible lysine (g g−1 day−1), digestible methionine (g g−1 day−1) or digestible total essential amino acids (g g−1 day−1), suggesting that the differences in SGR could not alone account for any of these variables.  相似文献   

2.
The effects of water hardness (9 and 220 mgl−1 as CaCO3) upon zinc exchange in brown trout exposed to 0.77 μmol Zn 1−1 have been investigated using artificial soft water (<49.9 μmol Ca l-1, <40.1 μmol Mg 1−1) and mains hard water (1671.7 μmol Ca 1−1, 493.6 μmol Mg 1−1) of known composition. Both hard and soft water-adapted fish exhibited a bimodal pattern of net zinc influx. Net zinc influxes during both fast and slow uptake phases were significantly greater ( P <0.001) in soft (82.9 and 6.2 μmol Zn 100 g−1 h−1) than in hard water (46.3 and 2.4 μmol Zn 100 g h−1). Zinc efflux (- 0.2 μmol Zn 100 g−1 h−1) was enhanced only in hard water during the slow net influx phase.
Brown trout exposed to zinc in hard water and placed in metal-free media exhibited a greater net efflux (- 25.6 μmol Zn 100 g−1 h−1) of the metal than did fish in soft water (-4.2 μmol Zn 100 g−1 h−1) treated in the same manner. Tissue 65Zn activities reflected both the differences in uptake and excretion rates of the metal between hard and soft water fish. During zinc exposure (0.77 μmol Zn 1−1) high water hardness reduced tissue burdens of the metal by reducing net branchial influx, and enhancing efflux of the metal in hard water fish.  相似文献   

3.
Growth of captive juvenile Pacific halibut was linearly related to energy consumption (J g−1 day−1) at 4°C by the following equation: growth (% body weight (b.w.) day−1)=0–007 (consumption J g−1 day−1)– 0.192; r2 =0.81. Weight gain was independent of size for fish between 9 and 7000 g when growth was expressed as a function of consumption in J g−1 day−1. Maintenance ration determined in feeding–growth experiments averaged 27.4 J g−1 day−1 at 4–0°C. Small halibut ate significantly more food than large fish. Single meals following 2 day fasts averaged 4.1% b.w. for halibut under 100 g, 1.72% b.w. for 1.2 kg fish and 1.1% B.W. for 6.8 kg fish. Both large and small size categories of halibut tended to evacuate their meal in about 3 days even though small fish ate relatively larger meals. Minimum estimates for daily ration to achieve growth rates observed in the Gulf of Alaska were approximately 0.5 to 2.4% b.w. day−1 depending on fish size and whether northern shrimp or yellowfin sole were their prey.  相似文献   

4.
Mercury concentrations in the axial muscle tissue of most (243) of the 254 Anguilla australis and most (20) of the 27 A. reinhardtii collected from 30 sites in coastal rivers and lakes in Victoria, Australia, during 1975–78 were well below the Australian statutory health limit (0.5 μg g−1 wet weight). For A. australis the mean mercury concentration was 0.17 μg g−1 (±0.16 s.d. , range 0.01–1.60 μg g−1); for A. reinhardtii the values were 0.37 ± 0.23 μg g−1 (range 0.12–1.10 μg g−1). Statistical analyses showed that variation in mercury concentration due to total length accounted for only 13% of the total variation in A. australis and 2% in A. reinhardtii whereas locality accounted for 54 and 68%, respectively. Both species are thus considered suitable as indicators of mercury pollution.  相似文献   

5.
The optomotor reaction of juvenile Coregonus schinzipalea Val. et Cuv. and Salmo salar L. was utilized to develop a circular tube metabolism chamber to measure oxygen consumption and ammonia excretion as a function of swimming speed. The metabolism chamber with a constant water flow assured the maintenance of stable conditions. The unidirectional movement of fish was measured in a circular tube with a single narrowing. The relationships between the swimming speed and oxygen consumption or ammonia excretion described by exponential equations allowed the extrapolation towards the standard metabolism, i.e., zero swimming speed. For a juvenile coregonid (0.1–0.15 g individual weight, 2.6–2.8 cm total length) standard metabolism at 14° C was estimated as 0.65 mg02 g−1 h−1 and 17.3 μg N(NH3)g−1 h−1, whereas for juvenile salmon (136mg individual weight) respective values at 22° C were 0.047mg02g−1h−1 and 0.61 μg N(NH3)g−1 h−1. The feeding test with juvenile salmon was also performed in this circular chamber, and in both energy and nitrogen budgets after a meal the partitioning could be precisely attributed to standard metabolism, active metabolism and specific dynamic action (in the case of oxygen consumption) or postprandial nitrogen increase.
The new metabolism chamber allowed the relationship between metabolism and swimming velocity of juvenile fish with developed rheotactic response. It could be used with adult fish for similar purposes.  相似文献   

6.
The effects of stress on plasma catecholamines (CA) and capacity for tissue accumulation of CA were studied in cardiac and skeletal muscle of cultured Atlantic salmon ( Salmo salar L.). Adrenaline (A) and noradrenaline (NA) were quantified by high performance liquid chromatography.
Plasma A and NA levels were 56±10 nmoll−1 and 77±17 nmoll−1 (± s.e.m. ), respectively, in a control group living under normal rearing conditions in a fish farm. Following a ±3 h period of pre-slaughter crowding and handling in the fish farm, plasma A reached 221 ± 72 nmol1−1 with no increase in plasma NA. An 0.5 h period of struggling out of water led to even higher level of plasma A (480 ± 89 nmol1−1), without change in NA.
Skeletal muscle was low in CA (A, 0.07 ± 0.02 and NA, 0.06 ± 0.01 nmol g−1 wet wt). Tissue CA was higher in the atrium (A, 0.47 ± 0.04 and NA 0.94 ± 0.10 nmol g−1) than in the ventricle (A, 0.25 ± 0.03 and NA, 0.30 ± 0.02 nmol g−1). The 0.5 h period out of water and the 0.5-3 h period of pre-slaughter crowding led to accumulation of A, but not NA, in the atrium.
These data show that A, released during stress, accumulates in an undegraded form in the atrial tissue of the Atlantic salmon. This suggests a potent uptake mechanism for A in the atria presumably in the sympathetic nerve terminals. The acumulation of A in the atrium appears to reflect the period of high plasma A during stress.  相似文献   

7.
Cadmium and zinc content of fish from an industrially contaminated lake   总被引:2,自引:0,他引:2  
Eleven species of fish from an industrially-contaminated lake were analysed for whole body cadmium and zinc content by atomic absorption spectrophotometry. Cadmium and zinc content of fish were species related, and most species accumulated these trace metals to levels significantly higher than background. Maximum concentrations detected were 13.60 μg Cd g−1 (dry wt) in a bluegill and 820 μg Zn g−1 in a redear sunfish. Cadmium content was much more variable than zinc content. Distributions of concentrations of both cadmium and zinc in fish were lognormal, and concentrations of both metals tended to decrease in higher trophic levels. Zinc concentrations significantly decreased as total length increased in three species.  相似文献   

8.
The energy density ( E D) of anchovy Engraulis encrasicolus in the Bay of Biscay was determined by direct calorimetry and its evolution with size, age and season was investigated. The water content and energy density varied seasonally following opposite trends. The E D g−1 of wet mass ( M W) was highest at the end of the feeding season (autumn: c . 8 kJ g−1 M W) and lowest in late winter ( c . 6 kJ g−1 M W). In winter, the fish lost mass, which was partially replaced by water, and the energy density decreased. These variations in water content and organic matter content may have implications on the buoyancy of the fish. The water content was the major driver of the energy density variations for a M W basis. A significant linear relationship was established between E D g−1 ( y ) and the per cent dry mass ( M D; x ): y =−4·937 + 0·411 x . In the light of the current literature, this relationship seemed to be not only species specific but also ecosystem specific. Calibration and validation of fish bioenergetics models require energy content measurements on fish samples collected at sea. The present study provides a first reference for the energetics of E. encrasicolus in the Bay of Biscay.  相似文献   

9.
The cytokinin content in fruit tissue of the kiwifruit ( Actinidia deliciosa [A. Chev.] C. F. Liang et A. R. Ferguson var. deliciosa cv. Hayward) was monitored during fruit development to identify which cytokinins were present and if they were linked with specific stages of fruit growth. Cytokinins were isolated and purified by column chromatography and high-performance liquid chromatography and quantified by radioimmunoassay. A novel HPLC step utilising an amine column was successfully introduced as a preparative step in the separation of the O - and 9-glucosides from the free bases and ribosides. The radioimmunoassay results were validated, and the different cytokinins identified, by gas chromatography-mass spectrometry. Cytokinins detected in fruit included the cytokinin free bases, zeatin and isopentenyladenine, their ribosides, nucleotides and both O - and 9-glucosides. Both qualitative and quantitative changes of the cytokinins occurred during fruit development. A decrease in cytokinin concentration occurred after anthesis (from 342 pmol g−1 fresh weight at anthesis to 41 pmol g−1 fresh weight 27 days after anthesis). A large increase in cytokinin concentration and content per fruit occurred as the fruit reached commercial maturity (to 1900 pmol g−1 fresh weight). Individual cytokinins showed quite different patterns. Zeatin, in particular, showed a peak in concentration (13 pmol g−1 fresh weight) 11 days after anthesis that correlated with the beginning of the cell division phase of fruit growth. The accumulation of cytokinin (mostly zeatin riboside or zeatin nucleotide) in mature fruit may be of significance for the postharvest storage of kiwifruit fruit.  相似文献   

10.
The body composition of protein and fat in Atlantic salmon Salmo salar and brown trout Salmo trutta before and after winter was investigated in a temperate, small river, normally ice covered from the middle of November until the end of March. Fat, protein and specific energy declined greatly in winter but were replenished rapidly in spring. Rates of decline were slower for the smallest fish, which also had the lowest specific content of fat, protein, and energy, while the differences in absolute amounts were greatest for the largest fish. The mean specific fat content was reduced by 45–70% during winter, relative to the pre-winter period (September). Mean daily reductions in specific enegy of the larger size groups of brown trout (3·7 × 10−3 kJ g−1 day−1) were almost half of the corresponding values for the largest Atlantic salmon (6·3 × 10−3 kJ g−1 day−1) during winter. A minor reduction in protein content was found during winter, with mean reductions of 6–10% in comparison to those in September. During spring the fat content was replenished rapidly, particularly for the smallest salmon fry (a threefold increase from April to June). Fat content in the larger salmon and trout increased by about 1·8 times. Based on estimated metabolic rates, digested energy during wintertime may contribute about two-thirds of the brown trout fry's energy demand. For Atlantic salmon, the corresponding value is about 50%. The winter period put considerable stress on the young salmonids living in lotic environments, in particular for the smallest fry with the lowest energy content before winter and the largest losses during winter. This should make the fry more vulnerable to adverse abiotic and biotic factors.  相似文献   

11.
The respiration of coho salmon, Oncorhynchus kisutch , weighing between 15 and 50 g was measured at gradually declining oxygen levels and at temperatures ranging between 14 and 17°C. The maximum and minimum oxygen concentrations tested were 250 and 40 μmol L−1, respectively. Respiration rates were measured for 1 h periods before oxygen concentration was lowered by 12.5 or 25.0 μmol oxygen L−1. At the end of these endurance tests the oxygen level was returned to normoxic conditions and respiration rates were determined for the recovery period. Under normoxic conditions (> 200 μmol L−1) the respiration of coho levelled around 5.1 μmol g−1 wet weight h−1. At intermediate levels between 150 and 200 μmol oxygen L−1, the average rate increased to 5.8 μmol g−1 h−1, which could be attributed to higher spontaneous activity of the test animals. At low oxygen levels (< 150 μmol−1) average respiration rates dropped to values between 5.5 and 5.7 μmol g−1 h−1, reaching a minimum of 3.8 μmol g−1 h−1 at oxygen levels below 50 μmol Lμ. First mortality was observed in this range. After exposure to reduced oxygen levels the fish maintained a higher respiration rate when again exposed to normoxic oxygen levels above 200 μmol L−1. Increased respiration rates were observed for a recovery period of 6 h.  相似文献   

12.
The amylase-producing ability of the intestinal microflora in cultured specimens of ayu, carp, channel catfish, Japanese eel and tilapia was determined. Mean viable counts of aerobes and anaerobes ranged from 1·1×106 to 3·7×108 cfu g−1 and from 1·3×103 to 1·6×108 cfu g−1, respectively. Aeromonas spp. and Bacteroidaceae were predominant in four to five fish species. Of 206 strains examined, 65 (31·6%) produced ≥0·01 U amylase ml−1. The percentage of producers differed among families and genera of bacteria and fish species. While 56% of the anaerobes produced amylase, only 20% of the aerobes did. More than 50% of Aeromonas , Bacteroidaceae and Clostridium strains produced amylase efficiently while Acinetobacter , coryneforms, Enterobacteriaceae, Moraxella , Plesiomonas and Streptococcus strains did not. High amylase production (≥0·05 U ml−1) was found in 12 strains, 11 from Aeromonas and one Pseudomonas . The percentage of high amylase producers in Japanese eel was lower than the other four fish (2–30%). These results strongly suggest that the amylase produced by the intestinal microflora play an important role in the digestion of starch in freshwater fish to some extent.  相似文献   

13.
Sexually mature female hake Merluccius merluccius with hydrated ovaries were sampled on a monthly basis in the Bay of Biscay, from May 1996 to October 1997 and from March to April 1998. The batch fecundity was positively related to total length. The relative batch fecundity ( F Brel) varied significantly among months and years, but not between areas, i.e. International Council for the Exploration of the Sea Divisions VIIIa and VIIIb within the Bay of Biscay. Two levels of F Brel were found in 1997: the highest between January and April (mean ± s . e . 167 ± 5 eggs g−1) and the lowest from May to October (112 ± 3 eggs g−1). Population condition factor and gonado-somatic indices ( I G) followed the expected trend in relation to the monthly changes in F Brel during 1997. The F Brel variation between years was 9% for 1996–1997 and 28% for 1997–1998, and the difference of the I G was c. 14 and 36%, respectively. Population relative egg production varied from a high value in January to March (985 eggs g−1) to a low egg production between April and October 1997 (445 eggs g−1).  相似文献   

14.
The relationship between specific rate of respiration (respiration rate per unit root dry weight) and concentration of reduced nitrogen was examined for maize ( Zea mays L.) roots. Plants with 2 primary nodal root axes were grown for 8 days in a split-root hydroponic system in which NO-3 was supplied to both axes at 1.0 mol m−3, to one axis at 1.0 mol m−3 and the other axis at 0.0 mol m−3 or to both axes at 0.0 mol m−3 Respiration rates and root characteristics were measured at 2-day intervals. Specific rate of respiration was positively correlated in a nonlinear relationship with concentration of reduced nitrogen. The lowest specific rates of respiration occurred when neither axis received exogenous NO−3 and the concentration of reduced nitrogen in the axes was less than 9 mg g−1. The greatest rates occurred in axes that were actively absorbing NO−3 and contained more than 35 mg g−1 of reduced nitrogen. At 23 mg g−1 of reduced nitrogen, below which initiation of lateral branches was decreased by 30–50%. specific rate of respiration was 17% greater for roots actively absorbing NO−3 than for roots not absorbing NO−3 Increases in specific rate of respiration associated with concentrations of reduced nitrogen greater than 23 mg g−1 were concluded to be attributable primarily to proliferation of lateral branches.  相似文献   

15.
The expression of PR-protein b1' in plants and cell suspension cultures of Nicotiana glutinosa L., Nicotiana debneyi Domin, and an amphidiploid cross of these two species, a hybrid, has been investigated. An enzyme linked immunosorbent assay has been employed to determine the concentration of PR-protein b1' in extracts. The PR-Protein b1' was constitutively produced in intact plants of the hybrid (around 25 μg g−1 leaf tissue), while only trace amounts of the protein (< 50 ng g−1 leaf tissue) were found in plants of the two parents. In suspension culture, the concentrations of PR-protein b1' were 8, 0.4 and less than 0.1 mg l−1 medium for the hybrid. N. debneyi and N. glutinosa , respectively. Only trace amounts of the protein were found in extracts from cells. Seven days after infection by tobacco mosaic virus (TMV) the concentration of PR-protein b1' in leaves of N. glutinosa was 22.5 μg g−1 leaf tissue. In N. debneyi and the hybrid a relatively limited induction of PR-protein b1' by TMV was observed. The influence of various phenoxyacetic acids on the expression of PR-protein b1' in the 3 cell cultures has been investigated. Cultures of N. glutinosa responded to treatments with 2,4-D and 2,4,5-T while cultures of N. debneyi and the hybrid were essentially unaffected. In the former case a concentration of 5–10 mg l−1 2,4,5-T was optimal and cells were most responsive to the treatment 4 days after subcultivation. The concentration of PR-protein b1' in elicited cell cultures of N. glutinosa was 2 to 4 mg l−1 medium.  相似文献   

16.
Abstract: Substrate utilization of microbial cells extracted from soil with a 0.85% aqueous sodium chloride solution, was determined to estimate effects on soil microorganisms at the community level with microtiter plates (Biolog GN®) containing 95 different sources of organic carbon. A consistent pattern of utilized substrates was obtained after 24 h of microtiter plate incubation at 28°C. The absorbance values (OD590) obtained from a microtiter plate reader after background correction were transformed by using the average absorbance values of oxidized substrates as a threshold to distinguish between well utilized and poorly or non-utilized substrates and thereby reduce variances between replicates. Doubling times of the extracted soil microorganisms in the microtiter plates were tested with 12 substrates and ranged from 1.96 h to 3.23 h, depending on the carbon source. The carbon source utilization assay was used to assess the effects of soil inoculation with Corynebacterium glutamicum with and without a genetically engineered plasmid (pUN1; 6.3 kb), which encoded for the synthesis of the mammalian protease inhibiting peptide, aprotinin. Additionally, aprotinin itself was added at two concentrations to soil samples. An identical decrease in the number of carbon sources utilized, especially carbohydrates, occurred upon soil inoculation with both C. glutamicum strains after inoculation with 106 cells g−1 soil. This effect was only detectable during the first three weeks of incubation, as long as cell numbers of C. glutamicum (pUN1) were above 105 cfu g−1. Soil amendment with aprotinin resulted in utilization of additional substrates, most of them carbohydrates. With 0.1 mg aprotinin g−1 soil this stimulation lasted 2 days and with 10 mg g−1 it lasted for 7 days.  相似文献   

17.
Since bioenergetics models for 0+ fish have seldom been validated by field consumption estimates, field-based and indirectly estimated daily food rations were compared in larval perch Perca fluviatilis and zander Stizostedion lucioperca. Field-based estimates were calculated with linear and exponential evacuation rates based on gut fullness data during a 24-h cycle, with hourly field samplings instead of the normally recommended 3-h intervals. Indirect calculations used bioenergetics modelling with variable activity multipliers ( A ). Field-based estimates of daily rations ranged between 0·21 and 0·27 g g−1 day−1 in perch (mean L T 13·1 mm) and 0·31–0·40 g g−1 day−1 in zander (mean L T 10·6 mm). The higher values were calculated by using the exponential model. Daily rations calculated by bioenergetics modelling with A = 1 were only slightly higher than direct estimates in both species. However, if A values >1 were used, calculated daily rations were substantially higher than direct estimates. Estimates of daily ration based only on every third value ranged between 41 and 72% compared with 1-h intervals, mainly because of lower estimates of evacuation rate.  相似文献   

18.
H. SUGITA, J. KAWASAKI, J. KUMAZAWA AND Y. DEGUCHI. 1996. The amylase-producing ability of intestinal bacteria in one marine crab and seven fish species was determined. Mean total viable counts ranged from 1.3 × 105 to 1.5 × 108 cfu g−1, and Vibrionaceae were predominant in all specimens. Of 1585 strains examined, 341 (21.5%) produced ≥0.01 U amylase ml−1. Percentage of producers (≥0.01 U ml−1) differed among genera/families. High abilities (≥0.05 U ml−1) were found in 1.4-3.6% of Enterobacteriaceae, Pseudomonas and Vibrionaceae strains. On the other hand, percentage of producers varied with animal species. These results reveal that the amylase producers were widely distributed in the digestive tracts of coastal animals including crabs and fish, irrespective of their food habitats.  相似文献   

19.
Ascorbic acid (AA) in the leaf apoplast has the potential to limit ozone injury by participating in reactions that detoxify ozone and reactive oxygen intermediates and thus prevent plasma membrane damage. Genotypes of snap bean ( Phaseolus vulgaris L) were compared in controlled environments and in open-top field chambers to assess the relationship between extracellular AA content and ozone tolerance. Vacuum infiltration methods were employed to separate leaf AA into extracellular and intracellular fractions. For plants grown in controlled environments at low ozone concentration (4 nmol mol−1 ozone), leaf apoplast AA was significantly higher in tolerant genotypes (300–400 nmol g−1 FW) compared with sensitive genotypes (approximately 50 nmol g−1 FW), evidence that ozone tolerance is associated with elevated extracellular AA. For the open top chamber study, plants were grown in pots under charcoal-filtered air (CF) conditions and then either maintained under CF conditions (29 nmol mol−1 ozone) or exposed to elevated ozone (67 nmol mol−1 ozone). Following an 8-day treatment period, leaf apoplast AA was in the range of 100–190 nmol g−1 FW for all genotypes, but no relationship was observed between apoplast AA content and ozone tolerance. The contrasting results in the two studies demonstrated a potential limitation in the interpretation of extracellular AA data. Apoplast AA levels presumably reflect the steady-state condition between supply from the cytoplasm and utilization within the cell wall. The capacity to detoxify ozone in the extracellular space may be underestimated under elevated ozone conditions where the dynamics of AA supply and utilization are not adequately represented by a steady-state measurement.  相似文献   

20.
The total distance travelled during the first two kinematic stages of the escape response of short-horn sculpin was significantly greater in post spawning fish (0·41 L) than in gravid fish (0·23 L). The maximum velocity of the snout during the C-bend was significantly higher (5·6 L s−1) in postspawning fish than in gravid fish (3·8 L s−1). To investigate some of the mechanisms underlying changes in swimming performance, the contractile properties of fast muscle fibres were determined in fish of similar body length. The rate of tetanic force relaxation (time from last stimulus to 50% peak force) was 34% faster in gr avid than in postspawning fish. Maximum contraction velocity, determined by the slack-test method, was significantly higher in gravid than in postspawning fish (6·8 v . 5·9 muscle lengths s−1). In contrast, both maximum isometric stress and power output (determined from the force–velocity relationship) were >50% higher in fibres from postspawning than from gravid fish, even though myofibrillar protein and water contents were similar (120 mg g−1 wet mass and 86% of body mass, respectively). The results show that swimming performance and the contractile properties of fast muscle fibres vary with the reproductive cycle in short-horn sculpin acclimated to the same photoperiodic and temperature regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号