首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformation of the glucotriose unit of the protein glycosylation precursor Glc3Man9GlcNAc2 was assessed by deuterium exchange studies on the model tetrasaccharide alpha Glc----2 alpha Glc----3 alpha Glc----3 alpha Man----OCH2CH2CH3 dissolved in deuterated dimethyl sulfoxide. The hydroxyl proton on C-2 of the nonreducing end glucose and on C-4 of the glucose attached to mannose both show dramatic isotope shifts indicative of a strong hydrogen bond between these two hydroxyl groups. Such a hydrogen bond requires a fixed conformation of the glucotriose unit that brings these hydroxyl groups within 3 A of each other, a conformation that is supported by molecular modeling based on hard-sphere exo-anomeric (HSEA) calculations. The temperature dependence of the hydroxyl proton chemical shifts supports the postulated hydrogen bond, and the torsional angles between the three glucose units derived from the HSEA calculations are consistent with results from related studies on other saccharides. The results support a model for biochemical function in which the glucotriose unit could modulate the activity of the oligosaccharyltransferase by binding in a fixed conformation to a specific effector site in the enzyme.  相似文献   

2.
The equation of state for a hydrogen plasma at high temperatures is considered in a physical and a chemical model. A simple expression is obtained that relates the pressure correction in chemical models to the high-temperature limit of the atom partition function. This expression ensures a correct asymptotic behavior of the equation of state in the high-temperature limit. It is explained why the familiar astrophysical model of Hummer, Mihalas, and Däppen, as applied to helioseismology, yields worse results than a physical model. A modification of the astrophysical model is proposed that makes it possible to use the nearest neighbor approximation to calculate the atom partition function in chemical models in solving astrophysical problems and problems concerning low-temperature plasmas.  相似文献   

3.
Previous studies have shown that the hydrogen atom transfer (HAT) reactions of tert-butoxyl radical from the Parkinsonian proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) occur with low selectivity at the allylic and non-allylic alpha-C-H positions. In this paper, we report a more comprehensive regiochemical study on the reactivity of the tert-butoxyl radical as well as on the associated primary kinetic deuterium isotope effects for the various hydrogen atom abstractions of MPTP. In addition, the results of a computational study to estimate the various C-H bond dissociation energies of MPTP are presented. The results of the present study show the allylic/non-allylic selectivity is approximately 73:21. The behavior of the tert-butoxyl radical mediated oxidation of MPTP contrasts with this reaction as catalyzed by monoamine oxidase B (MAO-B) that occurs selectively at the allylic alpha-carbon. These observations lead to the conclusion that the tert-butoxyl radical is not a good chemical model for the MAO-B-catalyzed bioactivation of MPTP.  相似文献   

4.
Dick JM  Shock EL 《PloS one》2011,6(8):e22782
Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.  相似文献   

5.
The topic of deuterium isotope effects is usually concerned with the effects on chemical reactions that are caused by the substitution of deuterium atoms for protium, or hydrogen, atoms in a molecule. These effects include changes in the rate of cleavage of covalent bonds to deuterium, or to an atom located adjacent to deuterium, in a reactant molecule. Deuterium isotope effects on other, noncovalent, interactions between molecules are known to occur, but they are generally considered to be insignificant, especially in biological experiments where deuterium substituted molecules are used as tracers. Noncovalent interactions between molecules include hydrogen bonding, and ionic and van der Waals interactions. This article reviews evidence for deuterium isotope effects on noncovalent interactions, with an emphasis on binding interactions between molecules of biological interest, but also including examples of nonbiological molecules in order to demonstrate the generality of these effects. The reality of this effect relies on the assumption that the only difference between the isotopomers considered is the presence of deuterium or hydrogen; there are no impurities present. The physical basis of the effect may be due to differences in the polarities and/or sizes of deuterated versus nondeuterated isomers, and the extent of a deuterium isotope effect on a noncovalent interaction depends on the site of deuteration within a biomolecule. The presence of this effect requires careful interpretation of results obtained in experiments with deuterium labeled compounds.  相似文献   

6.
Covalent organic frameworks (COFs) have emerged as a new class of crystalline porous polymers displaying molecular tunability combined with structural definition. Here, a series of three conjugated, photoactive azine‐linked COFs based on pyrene building blocks which differ in the number of nitrogen atoms in the peripheral aromatic units is presented. The structure of the COFs is analyzed by combined experimental and computational physisorption as well as quantum‐chemical calculations, which suggest a slipped‐stacked arrangement of the 2D layers. Photocurrents of up to 6 µA cm?2 with subsecond photoresponse times are measured on thin film samples for the first time. While all COFs are capable of producing hydrogen from water, their efficiency increases significantly with decreasing number of nitrogen atoms. The trending activities are rationalized by photoelectrochemical measurements and quantum‐chemical calculations which suggest an increase in the thermodynamic driving force with decreasing nitrogen content to be the origin of the observed differences in hydrogen evolution activities.  相似文献   

7.
Xu XP  Case DA 《Biopolymers》2002,65(6):408-423
We have used density functional calculations on model peptides to study conformational effects on (15)N, (13)C alpha, (13)C beta, and (13)C' chemical shifts, associated with hydrogen bonding, backbone conformation, and side-chain orientation. The results show a significant dependence on the backbone torsion angles of the nearest three residues. Contributions to (15)N chemical shifts from hydrogen bonding (up to 8 ppm), backbone conformation (up to 13 ppm), side-chain orientation and neighborhood residue effects (up to 22 ppm) are significant, and a unified theory will be required to account for their behavior in proteins. In contrast to this, the dependence on sequence and hydrogen bonding is much less for (13)C alpha and (13)C beta chemical shifts (<0.5 ppm), and moderate for carbonyl carbon shifts (<2 ppm). The effects of side-chain orientation are mainly limited to the residue itself for both nitrogen and carbon, but the chi(1) effect is also significant for the nitrogen shift of the following residue and for the (13)C' shift of the preceding residue. The calculated results are used, in conjunction with an additive model of chemical shift contributions, to create an algorithm for prediction of (15)N and (13)C shifts in proteins from their structure; this includes a model to extrapolate results to regions of torsion angle space that have not been explicitly studied by density functional theory (DFT) calculations. Crystal structures of 20 proteins with measured shifts have been used to test the prediction scheme. Root mean square deviations between calculated and experimental shifts 2.71, 1.22, 1.31, and 1.28 ppm for N, C alpha, C beta, and C', respectively. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement.  相似文献   

8.
Deuterium/hydrogen exchange factors (chi) were measured for the backbone amide sites of the membrane-bound forms of the 50-residue fd coat protein and the 23-residue magainin2 peptide in lipid micelles by solution nuclear magnetic resonance spectroscopy. By combining kinetic and thermodynamic effects, deuterium/hydrogen exchange factors overcome the principal limitations encountered in the measurements of kinetic protection factors and thermodynamic fractionation factors for membrane proteins. The magnitudes of the exchange factors can be correlated with the structure and topology of membrane-associated polypeptides. In fd coat protein, residues in the transmembrane helix have exchange factors that are substantially smaller than those in the amphipathic surface helix or the loop connecting the two helices. For the amphipathic helical peptide, magainin2, the exchange factors of residues exposed to the solvent are appreciably larger than those that face the hydrocarbon portion of membrane bilayers. These examples demonstrate that deuterium/hydrogen exchange factors can be measured by solution NMR spectroscopy and used to identify residues in transmembrane helices as well as to determine the polarity of amphipathic helices in membrane proteins.  相似文献   

9.
Fourier transform infrared (FTIR) spectroscopy probes the vibrational properties of amino acids and cofactors, which are sensitive to minute structural changes. The lack of specificity of this technique, on the one hand, permits us to probe directly the vibrational properties of almost all the cofactors, amino acid side chains, and of water molecules. On the other hand, we can use reaction-induced FTIR difference spectroscopy to select vibrations corresponding to single chemical groups involved in a specific reaction. Various strategies are used to identify the IR signatures of each residue of interest in the resulting reaction-induced FTIR difference spectra. (Specific) Isotope labeling, site-directed mutagenesis, hydrogen/deuterium exchange are often used to identify the chemical groups. Studies on model compounds and the increasing use of theoretical chemistry for normal modes calculations allow us to interpret the IR frequencies in terms of specific structural characteristics of the chemical group or molecule of interest. This review presents basics of FTIR spectroscopy technique and provides specific important structural and functional information obtained from the analysis of the data from the photosystems, using this method.  相似文献   

10.
Ligand binding to proteins is a key process in cell biochemistry. The interaction usually induces modifications in the unfolding thermodynamic parameters of the macromolecule due to the coupling of unfolding and binding equilibria. In addition, these modifications can be attended by changes in protein structure and/or conformational flexibility induced by ligand binding. In this work, we have explored the effect of biotin binding on conformation and dynamic properties of avidin by using infrared spectroscopy including kinetics of hydrogen/deuterium exchange. Our results, along with previously thermodynamic published data, indicate a clear correlation between thermostability and protein compactness. In addition, our results also help to interpret the thermodynamic binding parameters of the exceptionally stable biotin:AVD complex.  相似文献   

11.
An argument is presented that the spontaneous mutation rate, the core of evolution theory, may be dictated by the deuterium/hydrogen (D/H) abundance ratio. This argument is supported by quantum mechanical calculations of the zero-point energy reduction for DNA base pairs upon deuterium substitution for hydrogen and recent experiments that show that the rate of catalytic dsDNA unwinding is dependent on the stability of the dsDNA.  相似文献   

12.
The equation of Northrop [1975, Biochemistry, 14, 2644] for calculating intrinsic isotope effects from observed deuterium and tritium isotope effects of V/K, in which hydrogen is the reference isotope, has been extended to experimental designs using either deuterium or tritium as a reference. Partial derivatives of the intrinsic equations allow calculation of the relative precision of the three referenced isotope effects and these favor the order deuterium > tritium > hydrogen. In comparisons of observed and calculated isotope effects when hydrogen tunneling is present, both the precision and the magnitude of the difference was greater for intrinsic calculations than for exponentiations based upon a breakdown in the Swain-Schaad relationship.  相似文献   

13.
Hydrogen/deuterium exchange behavior of human recombinant [C22A] FK506 binding protein (C22A FKBP) has been determined by protein fragmentation, combined with electrospray Fourier transform ion cyclotron resonance mass spectrometry (MS). After a specified period of H/D exchange in solution, C22A FKBP was digested by pepsin under slow exchange conditions (pH 2.4, 0 degree C), and then subjected to on-line HPLC/MS for deuterium analysis of each proteolytic peptide. The hydrogen exchange rate of each individual amide hydrogen was then determined independently by heteronuclear two-dimensional NMR on 15N-enriched C22A FKBP. A maximum entropy method (MEM) algorithm makes it possible to derive the distributions of hydrogen exchange rate constants from the MS-determined deuterium exchange-in curves in either the holoprotein or its proteolytic segments. The MEM-derived rate constant distributions of C22A FKBP and different segments of C22A FKBP are compared to the rate constants determined by NMR for individual amide protons. The rate constant distributions determined by both methods are consistent and complementary, thereby validating protein fragmentation/mass spectrometry as a reliable measure of hydrogen exchange in proteins.  相似文献   

14.
1. Stereospecific deuterated benzylamine enantiomers, R(alpha-2H1)-and S(alpha-2H1)-benzylamine, were synthesized by a combined chemical and enzymatic method. 2. The retention or cleavage of the deuterium atom during deamination of benzylamine catalyzed by amine oxidases from different sources was assessed by a GC-MS procedure and confirmed by HPLC separation of the products and by the observation of a deuterium isotope effect. 3. Three types of stereospecific abstraction of hydrogen atoms from the alpha-carbon of benzylamine during deamination were observed: (a) In the first type of deamination the pro-R hydrogen is removed from the alpha-carbon. Enzymes in this category are mitochondrial MAO from different tissues; (b) The second type of deamination involves the abstraction of pro-S hydrogen. Soluble enzymes such as rat aorta benzylamine oxidase or diamine oxidase from hog kidney and pea seedling have been found to belong to this group; and (c) Bovine plasma amine oxidase exhibits the third type of deamination where no absolute stereospecificity is required. 4. The kinetic deuterium isotope effect during the deamination of benzylamine by the different amine oxidase varies greatly, i.e. VH/VD ranged from 1.7 to 4.0.  相似文献   

15.
The paper presents the results of theoretical and experimental studies of the radiative properties of plasmas produced by heating and compression of various materials to high energy densities. The specific features of the theoretical plasma model known as the ion model, which is used to calculate the radiative characteristics of plasmas of complex chemical composition, are discussed. The theoretical approach based on this model is applied to the plasma produced during the explosion of the X-pinch wires. The theoretical estimate of the radiation efficiency is compared with the experimental data on the total energy yield from an X-pinch made of two different wires (NiCr and Alloy 188). The radiative characteristics of (C12 H16 O8) and (C8 H12 O6) plasmas are calculated for the temperature diagnostics of plasmas produced from porous targets employed in inertial confinement fusion experiments with the use of laser radiation and heavy-ion beams.  相似文献   

16.
Summary The origin of vinegars obtained by bacterial or chemical oxidation of ethanol resulting from the fermentation of various sugars is identified by a new method based on NMR determination of site specific deuterium/hydrogen ratio in acetic acid.  相似文献   

17.
An excellent substrate of methylmalonyl-CoA mutase, methylmalonyl-carba-(dethia) coenzyme A (methylmalonyl-CH(2)-CoA), was synthesized by a chemoenzymatic method and its alpha-proton was exchanged with deuterium by long-term incubation in deuterium oxide at pH 6.9. After addition of highly purified epimerase-free methylmalonyl-CoA mutase the enzymatic rearrangement was monitored by 1H NMR spectroscopy. Already in the initial phases of the reaction only 72% of the produced succinyl-CH(2)-CoA was monodeuterated, while unlabeled and geminally dideuterated species, 14% of each, were also formed. After the addition of more enzyme the equilibrium (methylmalonyl-CoA:succinyl-CoA = 1:20) was quickly established, while the proportion of unlabeled succinyl-CH(2)-CoA rose to 30% and the geminally dideuterated species were slowly transformed to vicinally dideuterated ones. After 19 h of incubation the ratio of the unlabeled, monodeuterated, and dideuterated species was roughly 1:1:1 while no appreciable deuterium incorporation from the solvent occurred. The unexpected disproportionation of deuterium can be best explained by a 1,2 shift of a hydrogen atom in the succinyl-CH(2)-CoA radical intermediate competing with the hydrogen transfer from 5'-deoxyadenosine. A precedence for such a hydrogen shift in a radical was previously observed only in the mass spectrometer and was supported by ab initio calculations. Copyright 2000 Academic Press.  相似文献   

18.
Herein, we propose a modified version of the Wako-Saitô-Muñoz-Eaton (WSME) model. The proposed model introduces an empirical temperature parameter for the hypothetical structural units (i.e., foldons) in proteins to include site-dependent thermodynamic behavior. The thermodynamics for both our proposed model and the original WSME model were investigated. For a system with beta-hairpin topology, a mathematical treatment (contact-pair treatment) to facilitate the calculation of its partition function was developed. The results show that the proposed model provides better insight into the site-dependent thermodynamic behavior of the system, compared with the original WSME model. From this site-dependent point of view, the relationship between probe-dependent experimental results and model’s thermodynamic predictions can be explained. The model allows for suggesting a general principle to identify foldon behavior. We also find that the backbone hydrogen bonds may play a role of structural constraints in modulating the cooperative system. Thus, our study may contribute to the understanding of the fundamental principles for the thermodynamics of protein folding.  相似文献   

19.
It has been demonstrated that deuterium oxide enhances the SOS response of Escherichia coli cells induced by chemical genotoxicants and mutagens. This demonstrates that the heavy nonradioactive hydrogen isotope deuterium can be considered to be a comutagen.  相似文献   

20.
The biotin repressor is an allosterically regulated, site-specific DNA-binding protein. Binding of the small ligand bio-5′-AMP activates repressor dimerization, which is a prerequisite to DNA binding. Multiple disorder-to-order transitions, some of which are known to be important for the functional allosteric response, occur in the vicinity of the ligand-binding site concomitant with effector binding to the repressor monomer. In this work, the extent to which these local changes are coupled to additional changes in the structure/dynamics of the repressor was investigated using hydrogen/deuterium exchange coupled to mass spectrometry. Measurements were performed on the apo-protein and on complexes of the protein bound to four different effectors that elicit a range of thermodynamic responses in the repressor. Global exchange measurements indicate that binding of any effector to the intact protein is accompanied by protection from exchange. Mass spectrometric analysis of pepsin-cleavage products generated from the exchanged complexes reveals that the protection is distributed throughout the protein. Furthermore, the magnitude of the level of protection in each peptide from hydrogen/deuterium exchange correlates with the magnitude of the functional allosteric response elicited by a ligand. These results indicate that local structural changes in the binding site that occur concomitant with effector binding nucleate global dampening of dynamics. Moreover, the magnitude of dampening of repressor dynamics tracks with the magnitude of the functional response to effector binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号